-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNumer_detection.py
249 lines (205 loc) · 7.47 KB
/
Numer_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
## Loading models for detection
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import pandas as pd
import cv2
import torch
from torch import nn, optim
import torchvision.transforms as T
from torchvision.utils import make_grid
from torch.utils.data import Dataset, DataLoader
import timm
import segmentation_models_pytorch as smp
import imutils
from skimage.transform import ProjectiveTransform
import os
from tqdm import tqdm
from PIL import Image
import albumentations as A
from sklearn.model_selection import train_test_split
import gc
import glob
import random
import yolov5
import paddleocr
from paddleocr import PaddleOCR,draw_ocr
from ensemble_boxes import *
import re
import torch.nn.functional as F
import copy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
root = '/kaggle/input/'
yolo_model_det = yolov5.load(root + '/weights/final_yolo_weights.pt')
paddle_ocr_det_acc = PaddleOCR(cpu_threads=1, rec_batch_num=2, rec_algorithm='CRNN', rec_image_inverse=False)
model_ocr = torch.hub.load('baudm/parseq', 'parseq', pretrained=True).eval().to(device)
yolo_fast = yolov5.load(root + 'weights/yolo_on_6_fast.pt')
paddle_fast = PaddleOCR(use_angle_cls=False, lang='en', ocr_version = 'PP-OCR', structure_version = 'PP-Structure',
rec_algorithm = 'CRNN', max_text_length = 200, use_space_char = False, lan = 'en', det = False,
cpu_threads = 12, cls = False,use_gpu=False )
yolo_model_det.eval();
model_ocr.eval();
yolo_fast.eval();
## Helper Functions
def return_fast_output(yolo_model, img):
image = img.copy()
results_yolo = yolo_model(img)
try:
boxes = results_yolo.pred[0][:, :4].tolist()
scores = results_yolo.pred[0][:, 4].tolist()
labels = results_yolo.pred[0][:, 5].tolist()
except:
boxes = []
scores_yolo = []
labels_yolo = []
dic = {}
for each in labels:
if each not in dic.keys():
dic[each] = (0,[])
for i in range(len(labels)):
score , box = dic[labels[i]]
if score < scores[i]:
dic[labels[i]] = (scores[i], boxes[i])
# print(dic)
return dic
def recognize_fast(image,dic,rec):
vitals = {}
labels = {0.0: 'DBP' , 1.0:'HR' , 2.0:'MAP', 3.0:'RR' ,4.0:'SBP' ,5.0:'SPO2' }
for each in dic.keys():
score, box = dic[each]
xmin = int(box[0])
xmax = int(box[2])
ymin = int(box[1])
ymax = int(box[3])
img = image[ymin:ymax,xmin:xmax]
text = rec.ocr(img,cls = False,det = False)[0][0][0]
text = text.replace('(','').replace(')','').replace('/','').replace('-','').replace('*','')
if text.isdigit():
vitals[labels[each]] = text
return vitals
def return_output(yolo_model, paddle_ocr, img):
image = img.copy()
results_yolo = yolo_model(img)
try:
boxes = results_yolo.pred[0][:, :4].tolist()
scores_yolo = results_yolo.pred[0][:, 4].tolist()
labels_yolo = results_yolo.pred[0][:, 5].tolist()
except:
boxes = []
scores_yolo = []
labels_yolo = []
boxes_yolo = []
for box in boxes:
boxes_yolo.append([box[0]/1280, box[1]/720, box[2]/1280, box[3]/720])
# results_paddle = paddle_ocr.ocr(img, cls=False, rec = True)
# final_boxes_paddle = []
# final_confidence_paddle = []
# final_labels_paddle = []
# for i in range(len(results_paddle[0])):
# xmin = results_paddle[0][i][0][0][0]/1280.
# ymin = results_paddle[0][i][0][0][1]/720.
# xmax = results_paddle[0][i][0][2][0]/1280.
# ymax = results_paddle[0][i][0][2][1]/720.
# temp = [xmin, ymin, xmax, ymax]
# # area
# if (xmax*1280 - xmin*1280)*(ymax*720 - ymin*720) < 1000:
# continue
# if (xmax*1280 - xmin*1280) < 120:
# continue
# if (xmax*1280 - xmin*1280) > 300:
# continue
# final_boxes_paddle.append(temp)
# final_confidence_paddle.append(results_paddle[0][i][1][1])
# for i in range(len(final_confidence_paddle)):
# final_labels_paddle.append(0)
result_box = boxes_yolo
result_conf = scores_yolo
result_label = labels_yolo
return result_box, result_conf, result_label, img
################################################################################
def wbf_ensemble(boxes_list, scores_list, labels_list, image):
weights = [2, 1]
iou_thr = 0.6
skip_box_thr = 0.01
sigma = 0.1
boxes, scores, labels = weighted_boxes_fusion(boxes_list, scores_list, labels_list, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr)
return boxes, scores
def recognize(image,boxes,scores):
imgs = []
for box in boxes:
xmin = int(box[0]*1280)
ymin = int(box[1]*720)
xmax = int(box[2]*1280)
ymax = int(box[3]*720)
img = image[ymin:ymax,xmin:xmax]
imgs.append(img)
procs = [preproc_image(img) for img in imgs]
preds = model_ocr(torch.cat(procs, dim=0))
labels = inference_pred(preds)
return labels,image,boxes,scores
def preproc_image(img):
img = Image.fromarray(img).convert('RGB')
transform = T.Compose([
T.Resize((32, 128)),
T.ToTensor(),
T.Normalize(0.5, 0.5)
])
img = transform(img)
return img.unsqueeze(0)
def inference_pred(pred):
pred = pred.softmax(-1)
label, _ = model_ocr.tokenizer.decode(pred)
return label
def check_string(string):
if(('(' in string or ')' in string) and '/' in string):
return False
elif (string.count('(') > 1 or string.count('/') > 1 or string.count(')') > 1):
return False
string = string.replace('(', '').replace('/', '').replace(')', '')
pattern = r'^[\d]+$'
return re.match(pattern, string) != None
#################
def image_dict(text , boxes , scores, image):
c = 0
text_l = []
boxes_l = []
scores_l = []
for i, t in enumerate(text):
if check_string(t):
text_l.append(t)
boxes_l.append(boxes[i])
scores_l.append(scores[i])
boxes_l, scores_l = np.array(boxes_l), np.array(scores_l)
nums = np.array([float(txt.replace('(', '').replace('/', '').replace(')', '')) for txt in text_l])
try:
ind = np.argsort(scores_l)[-6:]
scores_l = scores_l[ind]
text_l = [text_l[x] for x in ind]
boxes_l = boxes_l[ind]
nums = nums[ind]
except:
pass
boxes_dic = []
for i,num in enumerate(text_l):
bbxi = boxes_l[i]
nm = nums[i]
text_data = np.array([0.0, 0.0, 0.0])
if '/' in num:
text_data[0] = 1.0
if '(' in num:
text_data[1] = 1.0
if ')' in num:
text_data[2] = 1.0
boxes_dic.append({'bbox': bbxi, 'num': nm, 'text_data': text_data})
return {'image': image, 'val_vec': nums.tolist(), 'boxes': boxes_dic}
def number_detection(img, mode = 'accurate'):
if mode == 'accurate':
boxes, scores, result_label, img = return_output(yolo_model_det, paddle_ocr_det_acc, img)
# result_box, result_conf, result_label, img = return_output(yolo_model_det, paddle_ocr_det_acc, img)
# boxes, scores, img = wbf_ensemble(result_box, result_conf, result_label, img)
text , img, boxes , scores = recognize(img, boxes,scores)
number_dict = image_dict(text , boxes , scores, img)
else:
temp = return_fast_output(yolo_fast, img)
number_dict = recognize_fast(img, temp, paddle_fast)
return number_dict