|
1 | 1 | import os |
2 | | -from langgraph.graph import StateGraph, END |
3 | | -from langchain_community.document_loaders import TextLoader |
4 | | -from langchain.text_splitter import RecursiveCharacterTextSplitter |
5 | | -from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings |
6 | | -from langchain_community.vectorstores import Chroma # ✅ Chroma로 교체 |
7 | | -from langchain_community.llms import HuggingFaceEndpoint |
8 | | - |
9 | | -from .modules.state import RagState |
10 | | - |
11 | | - |
12 | | -# -------------------------- |
13 | | -# 1. 문서 로드 + 분할 |
14 | | -# -------------------------- |
15 | | -def _load_docs(): |
16 | | - if os.path.exists("README.md"): |
17 | | - loader = TextLoader("README.md") |
18 | | - docs = loader.load() |
19 | | - else: |
20 | | - raise FileNotFoundError("README.md를 찾지 못했습니다.") |
21 | | - splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) |
22 | | - return splitter.split_documents(docs) |
| 2 | +from pathlib import Path |
| 3 | +from typing import List |
23 | 4 |
|
| 5 | +from langgraph.graph import StateGraph, START, END |
| 6 | +from langchain_community.document_loaders import TextLoader |
| 7 | +from langchain_text_splitters import RecursiveCharacterTextSplitter |
| 8 | +from langchain_core.vectorstores import InMemoryVectorStore |
| 9 | +from langchain_community.embeddings import OllamaEmbeddings |
| 10 | +from langchain_community.chat_models import ChatOllama |
| 11 | + |
| 12 | +# ❗ 절대 import (relative import 오류 방지) |
| 13 | +from casts.modules.state import RagState |
| 14 | + |
| 15 | + |
| 16 | +# ---------------------------- |
| 17 | +# 0) README 탐색 & 로드 |
| 18 | +# ---------------------------- |
| 19 | +def _find_readme() -> Path: |
| 20 | + here = Path(__file__).resolve() |
| 21 | + candidates = [ |
| 22 | + here.parents[1] / "README.md", # Rag_Example/README.md |
| 23 | + here.parents[2] / "README.md", # 상위 프로젝트 루트/README.md |
| 24 | + ] |
| 25 | + for p in candidates: |
| 26 | + if p.exists(): |
| 27 | + return p |
| 28 | + raise FileNotFoundError("README.md를 찾지 못했습니다. Rag_Example/README.md 를 생성하세요.") |
| 29 | + |
| 30 | +def _load_docs() -> List[str]: |
| 31 | + path = _find_readme() |
| 32 | + loader = TextLoader(str(path), encoding="utf-8") |
| 33 | + docs = loader.load() |
| 34 | + splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=80) |
| 35 | + splits = splitter.split_documents(docs) |
| 36 | + return [d.page_content for d in splits] |
| 37 | + |
| 38 | + |
| 39 | +# ---------------------------- |
| 40 | +# 1) 임베딩/리트리버 (Ollama) |
| 41 | +# ---------------------------- |
| 42 | +# Ollama 임베딩 서버: nomic-embed-text |
| 43 | +_embeddings = OllamaEmbeddings(model="nomic-embed-text", base_url=os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")) |
24 | 44 |
|
25 | 45 | _docs = _load_docs() |
26 | | - |
27 | | -# -------------------------- |
28 | | -# 2. 임베딩 + 벡터DB (Chroma) |
29 | | -# -------------------------- |
30 | | -_embeddings = HuggingFaceInferenceAPIEmbeddings( |
31 | | - api_key=os.getenv("HF_API_KEY"), # HuggingFace API 키 (환경변수) |
32 | | - model_name="sentence-transformers/all-MiniLM-L6-v2", |
33 | | -) |
34 | | - |
35 | | -vectorstore = Chroma.from_texts([d.page_content for d in _docs], _embeddings) |
36 | | -retriever = vectorstore.as_retriever() |
37 | | - |
38 | | - |
39 | | -# -------------------------- |
40 | | -# 3. LLM (HuggingFace API) |
41 | | -# -------------------------- |
42 | | -llm = HuggingFaceEndpoint( |
43 | | - repo_id="HuggingFaceH4/zephyr-7b-beta", # 원하는 모델로 교체 가능 |
44 | | - huggingfacehub_api_token=os.getenv("HF_API_KEY"), |
45 | | - temperature=0.7, |
46 | | - max_new_tokens=256, |
47 | | - return_full_text=False, |
| 46 | +# InMemory 벡터스토어 → 추가 패키지 설치 불필요 |
| 47 | +_vectorstore = InMemoryVectorStore.from_texts(_docs, _embeddings) |
| 48 | +_retriever = _vectorstore.as_retriever(search_kwargs={"k": 4}) |
| 49 | + |
| 50 | +# ---------------------------- |
| 51 | +# 2) LLM (Ollama Chat) |
| 52 | +# ---------------------------- |
| 53 | +# 예: mistral / llama3 등. (미리 pull 필요) |
| 54 | +_llm = ChatOllama( |
| 55 | + model=os.getenv("OLLAMA_MODEL", "mistral"), |
| 56 | + base_url=os.getenv("OLLAMA_BASE_URL", "http://localhost:11434"), |
| 57 | + temperature=0.2 |
48 | 58 | ) |
49 | 59 |
|
50 | 60 |
|
51 | | -# -------------------------- |
52 | | -# 4. 노드 정의 |
53 | | -# -------------------------- |
54 | | -def retrieve_node(state: RagState) -> RagState: |
55 | | - """사용자 질문 기반으로 문서 검색""" |
56 | | - query = state["messages"][-1]["content"] if state["messages"] else "" |
57 | | - docs = retriever.get_relevant_documents(query) |
58 | | - state["retrieved_docs"] = [d.page_content for d in docs] |
59 | | - return state |
60 | | - |
61 | | - |
62 | | -def generate_node(state: RagState) -> RagState: |
63 | | - """검색 결과 + LLM 기반 답변 생성""" |
64 | | - query = state["messages"][-1]["content"] |
65 | | - context = "\n".join(state.get("retrieved_docs", [])) |
66 | | - prompt = f"사용자 질문: {query}\n참고 문서:\n{context}\n\n답변:" |
67 | | - answer = llm.invoke(prompt) |
68 | | - state["messages"].append({"role": "assistant", "content": answer}) |
69 | | - return state |
70 | | - |
71 | | - |
72 | | -# -------------------------- |
73 | | -# 5. 그래프 정의 |
74 | | -# -------------------------- |
75 | | -workflow = StateGraph(RagState) |
76 | | -workflow.add_node("retrieve", retrieve_node) |
77 | | -workflow.add_node("generate", generate_node) |
78 | | - |
79 | | -workflow.add_edge("retrieve", "generate") |
80 | | -workflow.set_entry_point("retrieve") |
81 | | -workflow.set_finish_point("generate") |
82 | | - |
83 | | -rag_workflow = workflow.compile() |
| 61 | +# ---------------------------- |
| 62 | +# 3) 유틸 |
| 63 | +# ---------------------------- |
| 64 | +def _last_user_text(state: RagState) -> str: |
| 65 | + if not state["messages"]: |
| 66 | + return "" |
| 67 | + last = state["messages"][-1] |
| 68 | + # dict or BaseMessage 모두 안전 처리 |
| 69 | + return last["content"] if isinstance(last, dict) else getattr(last, "content", str(last)) |
| 70 | + |
| 71 | + |
| 72 | +# ---------------------------- |
| 73 | +# 4) 노드 |
| 74 | +# ---------------------------- |
| 75 | +def retrieve_node(state: RagState): |
| 76 | + query = _last_user_text(state) |
| 77 | + docs = _retriever.get_relevant_documents(query) |
| 78 | + ctx = "\n\n---\n\n".join(d.page_content for d in docs) |
| 79 | + # 컨텍스트를 system 메시지로 누적 |
| 80 | + return {"messages": [{"role": "system", "content": f"CONTEXT:\n{ctx}" if ctx else "CONTEXT: (no docs)"}]} |
| 81 | + |
| 82 | +def generate_node(state: RagState): |
| 83 | + # 누적된 system CONTEXT + user 질문을 하나의 프롬프트로 구성 |
| 84 | + full = "\n\n".join(m["content"] if isinstance(m, dict) else getattr(m, "content", str(m)) for m in state["messages"]) |
| 85 | + prompt = ( |
| 86 | + "You are a helpful RAG assistant. Use the CONTEXT to answer the USER question. " |
| 87 | + "If the answer is not in the context, say you are not sure.\n\n" |
| 88 | + f"{full}\n\nAnswer in Korean:" |
| 89 | + ) |
| 90 | + out = _llm.invoke(prompt) |
| 91 | + text = out.content if hasattr(out, "content") else str(out) |
| 92 | + return {"messages": [{"role": "assistant", "content": text}]} |
| 93 | + |
| 94 | + |
| 95 | +# ---------------------------- |
| 96 | +# 5) 그래프 |
| 97 | +# ---------------------------- |
| 98 | +def rag_workflow(): |
| 99 | + g = StateGraph(RagState) |
| 100 | + g.add_node("retrieve", retrieve_node) |
| 101 | + g.add_node("generate", generate_node) |
| 102 | + |
| 103 | + g.add_edge(START, "retrieve") |
| 104 | + g.add_edge("retrieve", "generate") |
| 105 | + g.add_edge("generate", END) |
| 106 | + return g.compile() |
0 commit comments