|
1 | | -<p align="center"> |
2 | | - <img width=60% src="https://github.com/PyPortfolio/PyPortfolioOpt/blob/main/media/logo_v1.png?raw=true"> |
3 | | -</p> |
| 1 | +## Welcome to PyPortfolioOpt |
4 | 2 |
|
5 | | -<!-- buttons --> |
6 | | -<p align="center"> |
7 | | - <a href="https://www.python.org"> |
8 | | - <img src="https://img.shields.io/pypi/pyversions/PyPortfolioOpt.svg" |
9 | | - alt="python"></a> |
10 | | - <a href="https://www.python.org"> |
11 | | - <img src="https://img.shields.io/badge/Platforms-linux--64,win--64,osx--64-orange.svg?style=flat-square" |
12 | | - alt="platforms"></a> |
13 | | - <a href="https://pypi.org/project/PyPortfolioOpt/"> |
14 | | - <img src="https://img.shields.io/badge/pypi-v1.5.6-brightgreen.svg" |
15 | | - alt="pypi"></a> |
16 | | - <a href="https://opensource.org/licenses/MIT"> |
17 | | - <img src="https://img.shields.io/badge/license-MIT-brightgreen.svg" |
18 | | - alt="MIT license"></a> |
19 | | - <a href="https://github.com/pyportfolio/pyportfolioopt/actions"> |
20 | | - <img src="https://github.com/pyportfolio/pyportfolioopt/actions/workflows/main.yml/badge.svg?branch=main" |
21 | | - alt="build"></a> |
22 | | - <a href="https://pepy.tech/project/pyportfolioopt"> |
23 | | - <img src="https://pepy.tech/badge/pyportfolioopt" |
24 | | - alt="downloads"></a> |
25 | | - <a href="https://mybinder.org/v2/gh/pyportfolio/pyportfolioopt/main/?filepath=cookbook"> |
26 | | - <img src="https://mybinder.org/badge_logo.svg" |
27 | | - alt="binder"></a> |
28 | | -</p> |
| 3 | +<a href="https://pyportfolioopt.readthedocs.io/en/latest/"><img src="https://github.com/PyPortfolio/PyPortfolioOpt/blob/main/media/logo_v1.png?raw=true" width="275" align="right" /></a> |
29 | 4 |
|
30 | | -<!-- content --> |
| 5 | +PyPortfolioOpt is a library implementing portfolio optimization methods, including |
| 6 | +classical mean-variance optimization, Black-Litterman allocation, or shrinkage and Hierarchical Risk Parity. |
| 7 | +PyPortfolioOpt is inspired by scikit-learn; it is **extensive** yet easily **extensible**, for casual investors, or professionals looking for an easy prototyping tool. Whether you are a fundamentals-oriented investor who has identified a |
| 8 | +handful of undervalued picks, or an algorithmic trader who has a basket of |
| 9 | +strategies, PyPortfolioOpt can help you combine your alpha sources in a risk-efficient way. |
31 | 10 |
|
32 | | -PyPortfolioOpt is a library that implements portfolio optimization methods, including |
33 | | -classical mean-variance optimization techniques and Black-Litterman allocation, as well as more |
34 | | -recent developments in the field like shrinkage and Hierarchical Risk Parity. |
35 | 11 |
|
36 | | -It is **extensive** yet easily **extensible**, and can be useful for either a casual investors, or a professional looking for an easy prototyping tool. Whether you are a fundamentals-oriented investor who has identified a |
37 | | -handful of undervalued picks, or an algorithmic trader who has a basket of |
38 | | -strategies, PyPortfolioOpt can help you combine your alpha sources |
39 | | -in a risk-efficient way. |
| 12 | +<!-- buttons --> |
40 | 13 |
|
41 | | -**PyPortfolioOpt has been [published](https://joss.theoj.org/papers/10.21105/joss.03066) in the Journal of Open Source Software 🎉** |
| 14 | +| | **[Documentation](https://pyportfolioopt.readthedocs.io/en/latest/)** · **[Tutorials](https://github.com/pyportfolio/pyportfolioopt/tree/main/cookbook)** · **[Release Notes](https://github.com/PyPortfolio/PyPortfolioOpt/releases)** | |
| 15 | +|---|---| |
| 16 | +| **Open Source** | [](https://github.com/pyportfolio/pyportfolioopt/blob/master/LICENSE) [](https://gc-os-ai.github.io/) | | |
| 17 | +| **Tutorials** | [](https://mybinder.org/v2/gh/pyportfolio/pyportfolioopt/main/?filepath=cookbook) | |
| 18 | +| **Community** | [](https://discord.gg/7uKdHfdcJG) [](https://www.linkedin.com/company/pyportfolioopt/) | |
| 19 | +| **CI/CD** | [](https://github.com/pyportfolio/pyportfolioopt/actions/workflows/release.yml) [](https://pyportfolioopt.readthedocs.io/en/latest/?badge=latest) | |
| 20 | +| **Code** | [](https://pypi.org/project/pyportfolioopt/) [](https://www.python.org/) [](https://github.com/psf/black) | |
| 21 | +| **Downloads** |   [)](https://pepy.tech/project/pyportfolioopt) | |
| 22 | +| **Citation** | [JOSS article](https://joss.theoj.org/papers/10.21105/joss.03066) | |
42 | 23 |
|
43 | | -PyPortfolioOpt is now being maintained by [Tuan Tran](https://github.com/88d52bdba0366127fffca9dfa93895). |
| 24 | + |
| 25 | +<!-- content --> |
44 | 26 |
|
45 | 27 | Head over to the **[documentation on ReadTheDocs](https://pyportfolioopt.readthedocs.io/en/latest/)** to get an in-depth look at the project, or check out the [cookbook](https://github.com/pyportfolio/pyportfolioopt/tree/main/cookbook) to see some examples showing the full process from downloading data to building a portfolio. |
46 | 28 |
|
@@ -352,7 +334,7 @@ SBUX: 0.0695 |
352 | 334 |
|
353 | 335 | ### Black-Litterman allocation |
354 | 336 |
|
355 | | -As of v0.5.0, we now support Black-Litterman asset allocation, which allows you to combine |
| 337 | +Pyportfolioopt supports Black-Litterman asset allocation, which allows you to combine |
356 | 338 | a prior estimate of returns (e.g the market-implied returns) with your own views to form a |
357 | 339 | posterior estimate. This results in much better estimates of expected returns than just using |
358 | 340 | the mean historical return. Check out the [docs](https://pyportfolioopt.readthedocs.io/en/latest/BlackLitterman.html) for a discussion of the theory, as well as advice |
@@ -483,7 +465,7 @@ BibTex:: |
483 | 465 |
|
484 | 466 | Contributions are _most welcome_. Have a look at the [Contribution Guide](https://github.com/PyPortfolio/PyPortfolioOpt/blob/main/CONTRIBUTING.md) for more. |
485 | 467 |
|
486 | | -I'd like to thank all of the people who have contributed to PyPortfolioOpt since its release in 2018. |
| 468 | +We'd like to thank all of the people who have contributed to PyPortfolioOpt since its release in 2018. |
487 | 469 | Special shout-outs to: |
488 | 470 |
|
489 | 471 | - Tuan Tran |
|
0 commit comments