Skip to content

Commit 5dc7bef

Browse files
Add files via upload
Signed-off-by: Fabiana 🚀 Campanari <[email protected]>
1 parent 50cd35c commit 5dc7bef

File tree

1 file changed

+121
-0
lines changed
  • class_7-✍🏻 HandMade Excercise prep EXAM -LP -MathModels - Simplex/✍️2-Lp solved by the Graphic Method

1 file changed

+121
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,121 @@
1+
# 📈 Graphical Solution to the Linear Programming (LP) Problem
2+
3+
**Objective:**
4+
5+
Maximize
6+
$$
7+
Z = 4x_1 + 3x_2
8+
$$
9+
10+
**Subject to:**
11+
12+
$$
13+
\begin{cases}
14+
x_1 + 3x_2 \leq 7 \\
15+
2x_1 + 2x_2 \leq 8 \\
16+
x_1 + x_2 \leq 3 \\
17+
x_2 \leq 2 \\
18+
x_1 \geq 0, \quad x_2 \geq 0
19+
\end{cases}
20+
$$
21+
22+
---
23+
24+
## Step 1: Plot the Constraints
25+
26+
Convert inequalities into equalities to draw the lines:
27+
28+
1. $x_1 + 3x_2 = 7$
29+
- If $x_1 = 0 \Rightarrow x_2 = \frac{7}{3} \approx 2.33$
30+
- If $x_2 = 0 \Rightarrow x_1 = 7$
31+
32+
2. $2x_1 + 2x_2 = 8$
33+
- If $x_1 = 0 \Rightarrow x_2 = 4$
34+
- If $x_2 = 0 \Rightarrow x_1 = 4$
35+
36+
3. $x_1 + x_2 = 3$
37+
- If $x_1 = 0 \Rightarrow x_2 = 3$
38+
- If $x_2 = 0 \Rightarrow x_1 = 3$
39+
40+
4. $x_2 = 2$ → horizontal line
41+
42+
---
43+
44+
## Step 2: Identify the Feasible Region
45+
46+
- The feasible region is the intersection of all shaded regions that satisfy the constraints.
47+
- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
48+
49+
---
50+
51+
## Step 3: Find Intersection Points (Vertices)
52+
53+
1. Intersection of $x_1 + 3x_2 = 7$ and $2x_1 + 2x_2 = 8$:
54+
- Multiply first by 2: $2x_1 + 6x_2 = 14$
55+
- Subtract: $4x_2 = 6 \Rightarrow x_2 = 1.5$, $x_1 = 2.5$
56+
- Point: **(2.5, 1.5)**
57+
58+
2. Intersection of $x_1 + 3x_2 = 7$ and $x_1 + x_2 = 3$:
59+
- Subtract: $2x_2 = 4 \Rightarrow x_2 = 2$, $x_1 = 1$
60+
- Point: **(1, 2)**
61+
62+
3. Intersection of $x_1 + x_2 = 3$ and $x_2 = 2$:
63+
- $x_1 = 1$
64+
- Point: **(1, 2)**
65+
66+
4. Intersection of $2x_1 + 2x_2 = 8$ and $x_2 = 2$:
67+
- $x_1 = 2$
68+
- Point: **(2, 2)**
69+
70+
5. $x_1 + x_2 = 3$ and $x_1 = 0 \Rightarrow x_2 = 3$ ❌ (Invalid since $x_2 \leq 2$)
71+
72+
6. $x_1 + 3x_2 = 7$ and $x_1 = 0 \Rightarrow x_2 = 7/3 \approx 2.33$ ❌ (Invalid since $x_2 \leq 2$)
73+
74+
---
75+
76+
## Step 4: Evaluate Objective Function at Each Vertex
77+
78+
Feasible Vertices:
79+
80+
- A: (0, 0)
81+
- B: (0, 2)
82+
- C: (1, 2)
83+
- D: (2, 2)
84+
- E: (2, 0)
85+
- F: (3, 0)
86+
87+
| Point | $x_1$ | $x_2$ | $Z = 4x_1 + 3x_2$ |
88+
|:-----:|:-----:|:-----:|:-----------------:|
89+
| A | 0 | 0 | 0 |
90+
| B | 0 | 2 | 6 |
91+
| C | 1 | 2 | 10 |
92+
| D | 2 | 2 | 14 ❌ |
93+
| E | 2 | 0 | 8 |
94+
| F | 3 | 0 | 12 |
95+
96+
---
97+
98+
## Step 5: Check Feasibility
99+
100+
- **(2,2)** violates: $x_1 + 3x_2 = 2 + 6 = 8 > 7$ ❌
101+
- All others: ✅
102+
103+
---
104+
105+
## ✅ Final Step: Choose the Best Feasible Point
106+
107+
| Point | $Z$ | Feasible |
108+
|:-----:|:---:|:--------:|
109+
| A | 0 | Yes |
110+
| B | 6 | Yes |
111+
| C | 10 | Yes |
112+
| E | 8 | Yes |
113+
| F | 12 | ✅ Best |
114+
| D | 14 | No |
115+
116+
---
117+
118+
## 🏁 Conclusion
119+
120+
- **Optimal solution:** $x_1 = 3$, $x_2 = 0$
121+
- **Maximum value:** $Z = 12$

0 commit comments

Comments
 (0)