You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -1684,7 +1688,9 @@ The **Assignment Problem** aims to allocate *n* tasks to *n* agents (machines, w
1684
1688
| Task 2 | 1 | 3 | 2 |
1685
1689
| Task 3 | 5 | 2 | 4 |
1686
1690
1687
-
---
1691
+
1692
+
<br>
1693
+
1688
1694
1689
1695
## Step 1: Set Up the Excel Spreadsheet
1690
1696
@@ -1821,11 +1827,11 @@ After running Solver, you should get a solution like:
1821
1827
1822
1828
<br><br>
1823
1829
1824
-
###1- [Modulo in Random Number Simulations]():
1830
+
## 1- [Modulo in Random Number Simulations]():
1825
1831
1826
1832
<br>
1827
1833
1828
-
####➢ Animated Visualization of the [Remainder from Integer Division]() Used in Random Number Simulations.
1834
+
### ➢ Animated Visualization of the [Remainder from Integer Division]() Used in Random Number Simulations.
1829
1835
1830
1836
<br>
1831
1837
@@ -1838,13 +1844,13 @@ The modulo operator (%) returns the remainder of a division. In simulations invo
1838
1844
1839
1845
<br>
1840
1846
1841
-
###2- [Why Use Modulo in Random Number Simulations]() ?
1847
+
## 2- [Why Use Modulo in Random Number Simulations]() ?
1842
1848
1843
1849
In simulations, we often need random values within a specific interval — for example, simulating a dice roll (1 to 6) or selecting a random day of the week (0 to 6). Random number generators typically produce large numbers, so the modulo operation helps normalize these into the desired range.
1844
1850
1845
1851
<br>
1846
1852
1847
-
###3- [Example]():
1853
+
## 3- [Example]():
1848
1854
1849
1855
Imagine your random number generator gives you a number like 247. If you want to simulate a 6-sided dice roll:
1850
1856
@@ -1862,7 +1868,7 @@ This maps any large number into the range of weekdays (e.g., 0 = Sunday, 6 = Sat
1862
1868
1863
1869
<br>
1864
1870
1865
-
###4- [Summary]():
1871
+
## 4- [Summary]():
1866
1872
1867
1873
In simulations, the % operator is a simple and efficient way to control the range of random outputs. It transforms raw random data into usable, context-specific values, essential for realistic and accurate simulation scenarios.
0 commit comments