Skip to content

Commit fb4fc39

Browse files
Update README.md
Signed-off-by: Fabiana 🚀 Campanari <[email protected]>
1 parent ce0b735 commit fb4fc39

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -248,7 +248,7 @@ The **graphical method** for solving simple linear programming (LP) problems inv
248248

249249
1. **[Plot the Constraints]():** For each constraint, treat it as an equality and plot the corresponding straight line on the Cartesian plane $\(x_1\)$ on the horizontal axis, $\(x_2\)$ on the vertical axis.
250250

251-
2. **[Identify the Feasible Region]():** For each inequality constraint, determine which side of the line satisfies the inequality. This can be done by testing a point (e.g., the origin $\(0,0)\)$; if it's not on the line) in the inequality. The feasible region is the area where all the shaded regions of the inequalities overlap. If there are non-negativity constraints $\(x_1 \geq 0\)$ and $\(x_2 \geq 0\)$, the feasible region will be in the **first quadrant**.
251+
2. **[Identify the Feasible Region]():** For each inequality constraint, determine which side of the line satisfies the inequality. This can be done by testing a point (e.g., the origin $\(0,0)\)$; if it's not on the line) in the inequality. The feasible region is the area where all the shaded regions of the inequalities overlap. If there are non-negativity constraints $\(x_1 \geq 0\)$ and $\(x_2 \geq 0\)$, the feasible region will be in the **[first quadrant]()**.
252252

253253

254254

0 commit comments

Comments
 (0)