diff --git a/README.md b/README.md index ba355ab..43c6bcb 100644 --- a/README.md +++ b/README.md @@ -327,20 +327,12 @@ Time-dependent form of Schrödinger’s equation: $\huge \color{DeepSkyBlue} i\hbar \frac{\partial}{\partial t} \psi(r, t) = \hat{H} \psi(r, t)$ -Where: - • $\large \color{DeepSkyBlue} \psi(r, t)$ is the wave function of the system. - • $\large \color{DeepSkyBlue} \hat{H}$ is the Hamiltonian operator. - • $\large \color{DeepSkyBlue} \hbar$ is the reduced Planck’s constant. + [Where](): + - $\large \color{DeepSkyBlue} \psi(r, t)$ is the wave function of the system. + - $\large \color{DeepSkyBlue} \hat{H}$ is the Hamiltonian operator. + - $\large \color{DeepSkyBlue} \hbar$ is the reduced Planck’s constant. -10. Werner Heisenberg (1927) -Uncertainty Principle, central to quantum physics. -Formula for the Uncertainty Principle: -$\huge \color{DeepSkyBlue} \Delta x \cdot \Delta p \geq \frac{\hbar}{2}$ - -Where: - • $\large \color{DeepSkyBlue} \Delta x$ is the uncertainty in position. - • $\large \color{DeepSkyBlue} \Delta p$ is the uncertainty in momentum.