Skip to content

Commit 35e0864

Browse files
committed
updated readme and random search
1 parent a8be092 commit 35e0864

9 files changed

+53
-22
lines changed

.gitignore

+2
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,8 @@ coverage.xml
5555
# Sphinx documentation
5656
docs/_build/
5757

58+
# IPython Notebooks
59+
.ipynb_checkpoints
5860

5961

6062
### PyCharm ###

Datasets/Bars.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
"name": "stderr",
1212
"output_type": "stream",
1313
"text": [
14-
"/home/greff/venv/py3/lib/python3.4/site-packages/matplotlib/__init__.py:872: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n",
14+
"/home/greff/venv/py3/lib/python3.4/site-packages/matplotlib-1.5.0+783.g23bc09d-py3.4-linux-x86_64.egg/matplotlib/__init__.py:877: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n",
1515
" warnings.warn(self.msg_depr % (key, alt_key))\n"
1616
]
1717
}
@@ -78,7 +78,7 @@
7878
"data": {
7979
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAElCAYAAACiWBzqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHOpJREFUeJzt3V2sHdWZJuDlQIKx5CbENlhEGRlDyxZWuIj5EU0E3LTj\nxpYARQg4VgPiPzLYMWkJSJCFGMckF2CBiIBAEJOoD0JRGpBwB2ghQWSa+ACRhigMrTE2mp9WADOE\nWOOmZ3py5mJC9yx5rTKrzjpVtfd5nsuqXeurVa69qz6fvd+aNz09HQAAAOATn+l7BwAAABgWjSIA\nAAARjSIAAAARjSIAAAARjSIAAAARjSIAAACRI5tWzps3r/jZGe+99/vk8uOO+5PibYaoaR4hpOcy\n1Lk37df09PS8Lvbh/fcPFJ1jbY7/KDrcPFNK596mRs36S5Ys7OQca/M5xnjo6nPMOTZ3DeEcq3Xd\na3tN6OLaMy7X9pxRvB+rrYt75b5rNOmzftM55i+KAAAARDSKAAAARDSKAAAARDSKAAAARDSKAAAA\nRBpTT2G21U7erD3eKOl77qX1p6cFRQLM1Kh99g+1BnAojSIw1mo+smcI0doldbp6nEzN4zLUxwk1\naXO+tBlvXAzhfVRSX5MCzFW+egoAAEBEowgAAEBEowgAAEBEowgAAEBEowgAAEBE6im9qpmI2Ga8\noWqTslf7WM52fQBmbohJsbXrjPv1RbIuQ+UvigAAAEQ0igAAAEQ0igAAAEQ0igAAAESE2dCr2j/g\nnss/CO977qX1p6enZ2lPYm2OS1fbtFGzThf73Of+dnWOAYy6vu8hmozatWoU6+f4iyIAAAARjSIA\nAAARjSIAAAARjSIAAAARjSIAAAARjSIAAAARjSIAAAARz1GkV++99/ui1x/uOTOl4w1Vm+fp1D6W\ns12/K7n9app/zW1K1TzHu3q/1DwuXRxjAGJ9f772fX3t6ho+1Po5/qIIAABARKMIAABARKMIAABA\nRKMIAABARKMIAABARKMIAABARKMIAABARKMIAABARKMIAABARKMIAABA5MjaAx533J90ss1Qlc5l\nnOYOAHSr7/uILur3Pce5YMjHeC6cY33Xz/EXRQAAACIaRQAAACIaRQAAACIaRQAAACIaRQAAACIa\nRQAAACIaRQAAACLVn6P43nu/Ty5vej5IbpshOtxzTlJzGerch/rMFgDg06l1H9H2nqC0fps6o3Sf\n2MYQ7sf6PsZd3Cv3XaNJ3/Vz/EURAACAiEYRAACAiEYRAACAiEYRAACASPUwGwAAutF3EEoX9fue\nI8xV/qIIAABARKMIAABARKMIAABARKMIAABARKMIAABApHrqaZtkqnFKsyqdyzjNHWAuqv05Ppev\nC33Pve/6AEPi8RgAACPqvfd+X2Wctk1yaf02dWrNcaj8BwVD5aunAAAARDSKAAAARDSKAAAARDSK\nAAAARDSKAAAARKSe0iux8vX0PffS+tPT07O0J7GuHtnT1fGvWaeLfe5zf7s6xwBgHFVvFHMRxk0X\n+FGKPT7cjUpqLkOde9+NBQAAMEy+egoAAEBEowgAAEBEowgAAEBEowgAAEBE6ikAwIjqO5hu1NKT\ngU9PowgAM9Am7bvNeOOiiyTwmsdekwLMVb56CgAAQESjCAAAQESjCAAAQESjCAAAQKR6mE2bH32P\n0w/FS+cyTnMHmItqf47P5etC33Pvuz7AkEg9pVelCXeHu4iPS1pgm5uV2sdytut3pU0iZc1tStU8\nx7t6v9Q8Ll0cYwDg8Hz1FAAAgIhGEQAAgIhGEQAAgIhGEQAAgIhGEQAAgIjUUwAAmMOG/GiYLvat\n7/n3XT+neqPYZ6x8F9rEzQ917kM9KQFGSZvrXpvxxsUQHjNTUn/o18ohHrPadebyewL65KunAAAA\nRDSKAAAARDSKAAAARDSKAAAARKqH2bT5Qe44/Yi3dC7jNPc2as9/Lh/PvudeWn96enqW9gQAgJny\neAwAAJjD+k6W7TsNedTSg2vXz/HVUwAAACIaRQAAACIaRQAAACIaRQAAACLCbABgBqQ319P33Puu\n30bf+9xF/b7nOBcM+RjPhXOs7/o5GkV6VZrydLg3Ut+pXbW0+cCofSxnuz4AAMPlq6cAAABENIoA\nAABENIoAAABENIoAAABENIoAAABEpJ4CY61NumtX27RRs86oRY6XjjU9PV2tNgDMNRpFAJiB3KNh\n2jbJ4/6omabjUmvuNY/9UJ9v9okhHrPadebye6IrfR/jvj8XRu19VLt+jq+eAgAAENEoAgAAENEo\nAgAAENEoAgAAEBFmAwAAc9gQAnVyRi2hexTr51RvFNukv/WdtFTicP+QpYlpfc59qCclAADQL189\nBQAAIKJRBAAAIKJRBAAAIKJRBAAAIKJRBAAAIOLxGMBYq5nE3EWCcZtk5S7GaluntMZQU6IBYK7x\nF0UAAAAiGkUAAAAiGkUAAAAiGkUAAAAiGkUAAAAiUk/p1eFSGfseb5T0PffS+tPT07O0J9Atn2P1\n9D33vusDDIlGEQAA5rC+Hz/U9+OnunrE1VDr5/jqKQAAABGNIgAAABGNIgAAABGNIgAAABGNIgAA\nAJF5IuoBAAD4//mLIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAA\nABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGN\nIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAABGNIgAAAJEjm1b+5e5rplPLb1z6Qnab\n5QveSC4/4/n7s9tMrbmxaTcGZfKDixrXTyx68pBl616/K/v6natvm/E+tXXm5MPZdXs33zyvi314\n//0DyXMs5+a9WxrX37N8x4z2Zyhy59m9z52f3Wb3xLVFNfYePDW5/NJd12W3WbLoQHZd6bm8ZMnC\nTs6xv1i2JXuO/fjVOw9ZdvnpWxvHa7NNqVSNtnVqjlVap22NWmP9/J0dnZxjf/6Zi7Pn2OS7jxaN\nNXH8VTPen1GQOi61517z2OfG6upzLHc/FkK9617umhBCCJc9dVN2Xem1J3dPtGHZVHab1L3VOGm6\nR9634bZB3o/V1nT+5XqLUk338LXOsab71F17Tsquq9UL5e7tF6/Yn6+9dnv2HPMXRQAAACIaRQAA\nACIaRQAAACIaRQAAACIaRQAAACKNqacw286575Gi15+2vu54Q3XDhvJtSuf+2DXlNWrW/0//vjnB\ntgvplLULG7dJp6Z9ucr+fCKXCrioxVj5BLaFLUbLSyWtrWg5VioBcGXLsfqWO/4v//KU5PJ8Jt54\nSb/3TqtaI5ck+c3VueT2Y7Nj5d6TU2u3l+5WdV/bWue698Ct3dQ/8oLZrzFyvtr3DkCaRpGR8toz\nq8IvNqU7nHFpEkPIxzRPTKRf32buVz6yKXksp9YUDzXoY597PEQuivuOl57KRnHnorXXPvvratHa\nTY/T+eDBo4seQ9IU0734iQPVYvVzcdz/sOVLxdH5uZv7t7573GAfpZR7dMLhHueT8vaOs4qP2ajJ\nvfe27XutWgx+0+MGcta/+WHxI666knuv1mygvvG9TeG5O9PX192Za0+b+v/y9JJsnVo1Rs2xu+YX\nHRPoiq+eAgAAENEoAgAAENEoAgAAENEoAgAAEBFmw8jJB0Ss6nQ/ZlMuNOXe585PLj8qzGtVJxUq\ncemu67KvX7LoQG5Nq/oAHF5X171c0NBlT92UXP75lteeVEDQhmVTuVe3qjFqcgFM+zZ8+gAzqE2j\nSK9yCaY5TSmCp63/TbUUx75NfrCz6PX/vHi6OCkxd0PQxsKz3y9K4wRg5lZdWe+61+aa8LuV5dee\n0hTZKzbvrJYqPVRtUnqhC756CgAAQESjCAAAQESjCAAAQESjCAAAQESjCAAAQETqKb2auODeotcv\nPUy4W+l4Q7X+0fJtSue+7fHyGjXr/93f3153BzIuuv6h5PK7G86l3DYXby/fplj+6STFdU68pd5Y\njc7N/59jcY2v51eVjrXrb/6qrDbAHNX3/VPTPUmtfWu6t6pV43D3qbNdP1yyoM44f6RRZKT8dsuy\nMPn05uS6vj/kaspFgU9MZF7fYu63X3Z18lhOrSkeaiSP/be2bAxPPnT9IcubmpGffntt8TalPvfD\nLyRrtKmz7/srq43V5ISX/lDtuHzxZ5+d9WMMwLDk7klq3l88c9V5s16j6T41LE8vrln/pCcO5uu3\n4KunAAAARDSKAAAARDSKAAAARDSKAAAARITZMHJu3rsls2ZZl7sxqyY/uCi5/N7nzk8uP6llnb0H\nTz1k2aW78rGbSxYdSC4/JtRN2epKav4hbGzcJv1vs7bK/nxi3et3JZd/LnyheKz8+2Vl8VhNzpx8\n+JBlJ7Qc64zn7z9k2RfDZ1uOBsAoSF+Tr65aI30NP69qjdx1d9ee9N3ayVWrp6/Hi1fsz75+am0+\n0l2jSK9Kk5nyN70hLN3xTrhnectc4oGZ/ODFote/fcmCsHvi2qJt0h/I7Xy09WDYufq2auPVlEv9\nzM3/7h0/CMsXvJFcl2vgL97+bDaptlSuSQwhhP913f8oOs5N75cTb3mr2vsldVEKIYR/PPczxedl\nqkkMIYT//vX/HabW3Fi8bwAcXs2kzDZy1+Rtj/8oe00ulbuGr3/0xWrX8Kbrbs6ejUdUu77lrsdt\n+eopAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0iAAAAEY0i\nAAAAEY0iAAAAkSNrD3jOfY+kV6xssc0A3bCheX1qLgvPLnt9Zxb3VxoAmLnLT99aZZw7Xuqo/oNH\nz36NUfPd4/regzBx/FW91t+2L7+u1r6tf3P2ayx95ZhW21U7/jvOqjPOHzU2ivcs31E0WFPTM/+t\n+eEXm64p2maIHvzrdcl5hJCfy4GXlwxy7kftn5edCwAwDLn7sZoN1B3nXhh+/OqdyXW7J9LbtKm/\n6IZ/ytapVWPUrPzOe0XHZBzdfuJpYfLdRw9ZXrOBfeaUY2e9xm/P+ihZI4QQwvL04pr1T9rySr5+\nC756CgAAQESjCAAAQESjCAAAQESjCAAAQKQxzObmvVuSy29c+kJmi02Nxc54/v5Dls0P8xu3GaLJ\nDy7KrFmX3Wbd63clli6psj8zcebkw8nlezff3PGeAAApufuxEBZWrbP34KnJ5Zc9dVNy+YqWdVL3\nRBuWTWVe/eWWVUZL6h45hBD2bbit4z3pT/r8O61qjfQ9/LFVa+Ter7v2nJRcfnLV6ul7+8Ur9mdf\nP7V2e3Zd1cdjPHbNfWH5gjeS63JvgI9Xfhym1txYczdmVb5JDOGGDTvDxKInD1mebhJDWHj2+2Hn\n6v4+AHJNIgAwfIufOFCcUJ+TaxKb/MOWL4XdE9cWbZO7J8pZ++yvk/dW4yR3j9ylmkmZbeTOv237\nXsv2FqVy9/Dr3/yw2jmW/0+dvD0/+Uq1Xqj2vb2vngIAABDRKAIAABDRKAIAABDRKAIAABCpGmYD\nAEB3Ji64t8o42x7vqP7WDmqMmo1H9L0HkKRRBAAYsFyyac0G6vbLrg6TT29Orts9kd6mTf1j7lyQ\nrVOrxqg5+Qf/p+iYQFd89RQAAICIRhEAAICIRhEAAICIRhEAAICIRhEAAIBI9dTTieOvSq/4yVfK\ntxmg9W82r0/O5W//tOz1XdlxVn+1AcbE5aen8/4XP1F3vHFxx0v5ddXm/t3jWm2WrP/g0TPcmZm7\nee+WzJplVevsPXhqcvllT92UXH5SyzrrXr/rkGUblk1lXn1eyyqj5Yzn708u37fhto73BP5NY6OY\ni2POaWp6Tv7LX4XJdx8t2maInjnl2OQ8QsjP5Zjz//Mg537SlleycwFgZvZfsjD8+NU70yuXpxeP\ne5MYQgh3nHth8rjUnPvK77yXP/bhxuTSXP1FN/xTw1j9WrrjneJ7tZxck9jk7UsWhN0T1xZtk2oS\nm6x/9MUwsejJom1GTa5JhL756ikAAAARjSIAAAARjSIAAAARjSIAAACRxjCbXMrWjUtfyGxxWmOx\n1I91T27cYpgmP7gos+bY7DapH28fU2l/ZuLMyYeTy/duvrmT+hdd/1DR60+8pe54Q3Xx9vJtSud+\nd538g9b1d/3NX9XdgYxcaNS2feXbNKUeVwunakhJLq2z9JXmT5lq+9yQoFxco2JC9t/94adltQGA\nf1X18Rjb9r0Wli94I7kul+i05ydfCVNr0glkQ5RvEkNY/+aHyWSuXMLXR3/7p2Hn6v5ij3NN4pDt\n+/7K8ORD1yfXjUuTGELIJrxNTKRf32bu39qyMXksp9YUDzWSx/72E08rTiPOpR7XTDDOpSS3qfPb\nsz6qNlaTXIJymxqjmJD97l/8u0GONWr6nnvf9QGGxldPAQAAiGgUAQAAiGgUAQAAiGgUAQAAiFQN\nswEA/k0uPfzlX56SXP75MG82d2cw9h48NbF0U9UauRC9b67OJbevy46VC6WbWtsiorqyWmFibZOw\ni+tf10GNUfP1vncA0jSK9Orop3aXb5RJPW011lBl5pjTeu6FdarX78B/+86fzerr227TRs06Xezz\nqO1vW8/deU1yea5JbPK7ldNh98S1M92lQUs3iSE8cOt92eT0UrkmsckVm3cWJZd36Z7l6S6uZgOV\nS8IOIYTdFRO3P/fDL2Tr1Koxar74s88WHRPoiq+eAgAAENEoAgAAENEoAgAAENEoAgAAENEoAgAA\nEKmeejpxwb3pFRuPKN9mgNY/2rw+OZetha/vyiUL+qs9A22SBEfN5AcXJZff+9z5yeUntayTSh+8\ndFc+u3zJogPJ5ce0rN+3NhH96X+bfKx+G/mUxSXFY+XfL6uKx2py5uTDhyw7quWjHlKJlfPD/FZj\ndSH3Ob605eMGRuma2Ma2x/Prqs294Z6jSek1HGCczZuens6ufP/9A/mVCYf7gJ98enPxNkOUmkcI\nzXMZ6txzc1myZGEnD/MqPccO1yTmIsRHTWmjGEIojtTPRdS3aRRDCGHn6tuK6vd9juXmH0LIRvTn\n/l1CCMlY/TYOF8Vfcpy7er+kmsRPlJ6XTY81mFpzY9FYXZ1jf/5n27KfY7nP2JwhXBe60MU1seax\nH+q1cuL4q6rWmXz3MP8bXql+SZ3acxyq3DHp+xzrSptrcqkuruFN191de/L/rV96fcvJXY8Xr9if\nr712e/Yc89VTAAAAIhpFAAAAIhpFAAAAIhpFAAAAIo2pp7kfZN649IXMFlc3FkuFFJzcuMUw5X8M\ne152m1RAxTGh/9TR3I9e926+ueM9ARg/uevoy788Jbm8bYLxqEkHVzTfQ5TKBSN9c3XuHua87Fi5\nkKmptdsL96qdrtK+c4Eilz11U3J52/M1dTw3LJvKvPrYllVGS+583behLCiurXPue6STOjmPXZNf\nV2vfbtgw+zVOW99uu2rHf3GdYT5R9fEY2x7/UTaZKPcG2LPxiGpJP11oSkxa/+iLydSk3AXmo60H\ni5Mia2pKKgTg08klYra5uX/7kgXFSbGjJteMNN1DlGpKz80pvYYPwdJXjqmWXtyUOpnz9o6zis/X\n0uO5/s0PqyVSDlWb83XcXPnIpvCLTYd2izUb2Af/et2s13jtmVXJGiGEEJanF9esf9T+efn6Lfjq\nKQAAABGNIgAAABGNIgAAABGNIgAAAJGqYTYhhHDR9Q+lV3y9xTYDdPFhAs6Sc7mu8PVdObf//yf4\n2tayH/CuurLueEN1RTobo1Hp3B+4tbxGzfq/eqCbFD8AYPjSgUqbqtZIh1Kuq1ojF2S2a086J3h+\nmF+1fiqscvGK/dnXN6U3NzaKpUlaTU3PF3/22fDkQ9cXbTNEP/322uQ8QsjP5XM//MIg537CS3/I\nzmWofvPYqvDcnek0p3FpEkMI2YS3iYn069vM/Rvf25Q8llNriocaq2MPAHNNzaTMNnKpu49dc1+1\nNOTckwtu2LCzWrJum7Trj1d+XO0JELWfaND/n5QAAAAYFI0iAAAAEY0iAAAAEY0iAAAAEY0iAAAA\nkeqPx4DZlk+UWtXpfsymXDLXvc+dn1z++TCvVZ1Uytilu/LPc1my6EBuTav6MA5yCdYn3lJ3vHFx\nd0OgerW5NzySq0npI66G4Jz76qROP9Yy9LK0/sKzZ7/GyFnZ9w6EcPnpW3utf8dL+XW19m3ts7Nf\nY/ET7bardvy3fKnOOH9UtVE8ePwRnWwzVKVzGae5t5V71EVOU+zwqit/U/xIl6Ga/GBn0et/t3I6\n7J64tmibXBR1G0de8H7Yufq2auPBONj3/ZX5RxAtTy8e9yYxhBC+tWXjrD8yKvdIrv8nHUNf+oir\nLuWubTUbqCsf2ZR9RMLuzKOZ2tQ/8PKSokcxjH2TGEKY/9b83h9P0bc7zr0w/PjVOw9ZXrOBfXbt\nl2e9xv5LFiZrhBCyn/s166/Y8V/z9Vvw1VMAAAAiGkUAAAAiGkUAAAAiGkUAAAAiUk+Bsfa1rekg\nhAduLd/mis3l25Q68oLm9SV1Vl1Zb6xGDYl9xTW+Wm+sXz2QD7/qSi6A6+VfnpJcfsJs7syApMO0\nNlatccbz9yeXf3P1C5kt1mbHWvf6XcnlU2u3l+5WK12lfedCzi576qbk8qNaJm6njueGZVO5V7eq\nMWpy5+u+DXMnKC59/l1YtUY6Vf7LVWvk3q+79pyUXF479PbMyYcPWbZ4xf7s65s+x6o2isf//L80\nvyARwnPYbYYoEybUOJehzr1eMBKMlG98b1MydbepGfkP964r3qbUvzy9JJsGXFrnN4+tqjZWk8+/\nNa/acTl21/xZP8a15RIxm1Kac/7x3M8UJxiPmlwzcveOH4TlC96oUiN3093k4u3PholFTx6yPNck\nDsFp6+ulfbdJwv7nxeWJ26XH84YNO5P/LuOkzflaW82kzDZy598dLz1V7XMh9+ixtc/+uto51uZz\n/63vHhem1qTTmEulmsSZ8NVTAAAAIhpFAAAAIhpFAAAAIhpFAAAAIo1hNrkfZN64NJcY1pxMlPqx\nbu2kny7kfgzblJqU+vH2okr7MxO5H73u3Xxzx3sCAEAfLrr+oV7r392QyVRr3y5uCCmuVePEW9pt\nV+34n1v3b4BVU0+bkolyiU41k366kG8S86lJuYSvDx48Ouxc3V/sce1kJBiiRf/xf87q69tu00bN\nOl3s86jtLwD9+NaWjckE6ZoN7E+/vXbWa+z7/spsEnZYnl5cs/4JL/0hX78FXz0FAAAgolEEAAAg\nolEEAAAgolEEAAAgolEEAAAgUjX1FGCU7D14amLp1Y3bpJOPz6uxO/8ql5R8TFhQPFbuMUchLCse\nq0kqRfmklmOlUrJPbjkWANCORhEYa5NPb04uTzeJIWx7/EfZx/zkHo+z/tEXk4/GaSPXJIYQwkdb\nDxY9UiffJIawdMc74Z7lDQ+uKpB71M7blywIuyeuLRor9yilPRuPGKlHKQGMkoPHH9H3LiR1sV99\nz73v+k189RQAAICIRhEAAICIRhEAAICIRhEAAICIMBt6dfnpW4tev/iJuuMN1dpny7cpnfsdL5XX\nqFn/5+/UCVKBvp1z3yPJ5aetrzveuHjsmvy6anNf2W6zVP2FZ89wX4BPJR0yt6lqjXQo3bqqNXJB\ncrv2pLPAjw3zq9ZPBcwtXrE/+/qptduz6zSKjJT9lywMP371zuS6cWkSQwjZBM2JifTr28z9jnMv\nTB7LqTXFQ43VsYdaXntmVfjFpkxXtDy9eNybxBBCuPKRTcnjUnPu89+anz/2IZ2em6t/4OUlDWPB\neHjuzn7P8VwS+QO33pdNIi+VSy6/YvPOasnlTWnjOR9+9eNqqd65FPK2fPUUAACAiEYRAACAiEYR\nAACAiEYRAACAiEYRAACAyLzp6em+9wEAAIAB8RdFAAAAIhpFAAAAIhpFAAAAIhpFAAAAIhpFAAAA\nIhpFAAAAIv8X0PMpBMHheyQAAAAASUVORK5CYII=\n",
8080
"text/plain": [
81-
"<matplotlib.figure.Figure at 0x7fd69d85ab00>"
81+
"<matplotlib.figure.Figure at 0x7fafea02a2e8>"
8282
]
8383
},
8484
"metadata": {},

Datasets/Corners.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
"name": "stderr",
1212
"output_type": "stream",
1313
"text": [
14-
"/home/greff/venv/py3/lib/python3.4/site-packages/matplotlib/__init__.py:872: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n",
14+
"/home/greff/venv/py3/lib/python3.4/site-packages/matplotlib-1.5.0+783.g23bc09d-py3.4-linux-x86_64.egg/matplotlib/__init__.py:877: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n",
1515
" warnings.warn(self.msg_depr % (key, alt_key))\n"
1616
]
1717
}
@@ -109,7 +109,7 @@
109109
"data": {
110110
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAElCAYAAACiWBzqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADWtJREFUeJzt3bFrZMcdB/BVbEhld7rDlWvXDsEEAkf+CRk1hkOdIJhL\nkfwDbg9jUHccuFFQY9IHzHVO4z/ClTlfF9dmUxjDfRWtNPv2zb6ZN59PeVrtPc3Oruar9/vNnGy3\n2w0AAAD85ndLXwAAAABtERQBAAAIgiIAAABBUAQAACAIigAAAARBEQAAgPDufV988+ZnZ2cM6vT0\nvZNj/D/m2LjMMWpb4xx79Oj9qs//00//rfr8a7PGOcbDar4Pb78HzbFljPRZe98cc0cRAACAICgC\nAAAQBEUAAADCvT2KAMD9jtmv1IPWxqP0enoca4Ca3FEEAAAgCIoAAAAEQREAAIAgKAIAABBsZgMA\nnZi64Urtw6NhJDU3VaINXuNfuaMIAABAEBQBAAAIgiIAAAChmR5FB+ICS6ndV9Db51ZrB6YDHMMa\ne8x4mAyyWzNBEQDWbJRFhk0gANZB6SkAAABBUAQAACAoPQUAhjel/HW73Va4EoA2uKMIAABAEBQB\nAAAIgiIAAABBUAQAACDYzAYAgJ1qnnM5yvmi0CNBEaDQKAsaB6avzyhzFw5R+j7xecdd1vg5q/QU\nAACAICgCAAAQuis9nXq7v7fbwaP0A4zyc5YyHgDA6GqX9x6zxWKO9VfN8dhutzu/1l1QBICW+CPM\n4WqOodcHYBqlpwAAAARBEQAAgCAoAgAAEARFAAAAgs1sAAA4mI2DYF3cUQQAACAIigAAAARBEQAA\ngDBkj+KjR+8XPU6tPQAAMKLuguIo4W3Kz1kagHvkdd9tza/7sYwyv2oyhsAo/K5uxxy/e3r4/TX1\nGg+dd0pPAQAACIIiAAAAobvSUwCAu+xTZtVDuRnAktxRBAAAIAiKAAAABEERAACAICgCAAAQBEUA\nAACCXU8BANjJDrEwJncUAQAACIIiAAAAoevS030O1gUAAKBMM0FR/fvhehzDHq+5NcYQANrmd/V+\njNc8Dh1HpacAAAAEQREAAIAgKAIAABCa6VEE6F3pBlt6L1iLmnPehnVsNj5XYUnuKAIAABAERQAA\nAIKgCAAAQNCjyCrV7m3RC0Gvar43vC8AuM3vnX51HRRNDgAAgPkpPQUAACAIigAAAARBEQAAgCAo\nAgAAELrezAYAWCcb1gEsyx1FAAAAgqAIAABAUHoKcGRTDx9WikevzHk2m7oHrwPzExQZmkUIo5ky\n5y3uAKjNmqw9Sk8BAAAIgiIAAABBUAQAACDoUQSAA5T2cOq/2d/tsTWGAMfjjiIAAABBUAQAACAI\nigAAAARBEQAAgGAzG4CZ2GiD0cw150s3BKJvPiOhL+4oAgAAEARFAAAAgqAIAABA0KMIDavdt6Nf\n5FcOTJ9HyTgaQwDog6DIKlmMwnxK3k82IwHgLtZk/VJ6CgAAQBAUAQAACEpPAeAIppTn9liypQwZ\noFzL+1G4owgAAEAQFAEAAAiCIgAAAEFQBAAAIDSzmU3LjZwAAKMqXaNZa+1mDOlRM0ERmJdfNgAA\nTKX0FAAAgCAoAgAAEJSerkiP9e89XnMvbo+tMTzc1F7q3sbegekALMn6cD4PjeV2u935NUERAA5g\noZKMB8D8pny2HvqHX6WnAAAABEERAACAICgCAAAQ9Cg2ShPv+tkwhBH5bAOAPnQXFN9ePFhoAwAA\nzE/pKQAAAEFQBAAAIHRXegrUoXcMgENMaQnq8XeK1idGISgCw+txodKCfcfN4goA+qH0FAAAgCAo\nAgAAEARFAAAAQnc9inpc0ijjMUqDPAAAZaaug3tcIy6x5u8uKMJa3PUhNUrwBwCgLLQutT5UegoA\nAEAQFAEAAAiCIgAAAEGPIgDNsYEVACxLUAQAYCd/hEnGg1EoPQUAACAIigAAAASlpzAIZzQyN3MK\nANarmaCo3ntMXvc013hYwAMAvbI+TEuNh9JTAAAAgqAIAABAEBQBAAAIgiIAAAChmc1sSJp4gTXy\n2QYAfXBHEQAAgCAoAgAAEARFAAAAwsl2u136GgAAAGiIO4oAAAAEQREAAIAgKAIAABAERQAAAIKg\nCAAAQBAUAQAACIIiAAAAQVAEAAAgCIoAAAAEQREAAIAgKAIAABAERQAAAIKgCAAAQBAUAQAACIIi\nAAAAQVAEAAAgCIoAAAAEQREAAIAgKAIAABAERQAAAIKgCAAAQBAUAQAACIIiAAAAQVAEAAAgvHvf\nF9+8+Xl7rAuhLaen750c4/8xx8ZljlHbGufYk+cvqj7/q2cXVZ9/bdY4x3hYzffh7fegObaM88dP\nqz7/9euXVZ9/H/fNMXcUAQAACIIiAAAAQVAEAAAg3NujCADc78sfP6v23J9/8HW1566ltfE4O78q\netzN9eXezw2wZu4oAgAAEARFAAAAgqAIAABAEBQBAAAIgiIAAADBrqcA0IlXzy4mfd+T5y9mvhIY\n15T3ofdgX65fv9z7e84fP61wJctyRxEAAIAgKAIAABCaKT0tvSU/tewGYJeaB4RvNv0dmt7agekA\nx1C1dPDvf6r33Bzk7Pyq6HE315eVr6Q9zQRFAFizUULylJ+z9h9rANif0lMAAACCoAgAAEAQFAEA\nAAh6FAGA4ZVuaPG2b//9jwpXAtAGdxQBAAAIgiIAAABBUAQAACDoUQQAYKea51yOcr4o9EhQBCg0\nyoLGgenr8+rZxdKXAM27fv2y6HF3fd499LlZ/hnpvdqr0vnTE6WnAAAABEERAACAICgCAAAQ9Cg2\napTG8VF+zlLGAwAYXe2+9ylrorPzq0n/18315aTve1vN8fji9JudX2smKGq0B6BH/ghzuJpjOMci\nDd42Zb76nKBHSk8BAAAIgiIAAAChmdJTAABo3SfffvV///afv/x1gSuBugRFAAAOpg8P1kXpKQAA\nAEFQBAAAIAiKAAAAhGZ6FEsPkpyj/v388dOix12/fnnw/wUAANCbZoIiaUogLg3bPRqlQd7rvoxR\n5ldNxhAYhR1O2zHH756b68sZrqSuqT/noWtEpacAAAAEQREAAICg9BQAWIW7DkLfRfkgwP3cUQQA\nACAIigAAAARBEQAAgCAoAgAAEGxmAwAAFZVutGSTJVoiKAIAsNMch5oD/VF6CgAAQBAUAQAACF2X\nnp4/frr0JQAAAKzOyXa73fnFN29+3v3FBtQOitevX1Z9/padnr53coz/p/U5Rj3mGLWZY+Mp3TBk\ns5ln0xBzjNrMMWq7b44pPQUAACAIigAAAARBEQAAgND1ZjYALXGgMqMp3StgSs//Pv2GrNfZ+VXR\n426uLytfCYzHHUUAAACCoAgAAEAQFAEAAAh6FFklZ2zC3Wq+N7wvALitZr+xnv+6ug6KFiUAAADz\nU3oKAABAEBQBAAAIgiIAAABBUAQAACB0vZkNALBOdjMEWJY7igAAAARBEQAAgKD0FODIph4+rBSP\nXp0/fjrp+5yXvC5n51dLXwKwB0GRoVmEMJopc37qIh8ASvljaHuUngIAABAERQAAAIKgCAAAQNCj\nCAAH+PLHz4oe9/kHX1e+kvW5PbbGEOB4BEUAYHG3N1oqDeAA1KH0FAAAgCAoAgAAEJSeAgCLU2oK\n0BZBEWAmDgtmNLf7CqcSEsdwc3259CUAe1B6CgAAQBAUAQAACIIiAAAAQY8iNOzs/Krq8+sX+ZUD\n0+dRMo7GEAD6ICiySnNtsACUvZ9sRgLAXWz01i+lpwAAAARBEQAAgCAoAgAAEPQoAsARTOnj7HHz\nH/2qAOWePH9R9flfPbuY/L2CInTood1Ka++WCgDAuik9BQAAIAiKAAAAhGZKTz/59quqz+8MF9bq\nrvfOh5t3FrgSANaotO+0x57aYzGG9KiZoAjM54eLX/xxBACAyZSeAgAAEARFAAAAgqAIAABA0KO4\nIj02Svd4zb24PbbG8HBTDxLvbewdmA7AkqwP5/PQWH5x+s3OrzUTFEs23qi9Myr06K73joU+HI+F\nSjIeAPN79exi7+85dD2o9BQAAIAgKAIAABCaKT0tuzX6cfXraMXZ+VXR426uLytfCbWUlFJ/uHnn\nCFcCx+OzDQD60ExQLPHpR99H74OeRdbuh4tfivp3oQff/e2PS18CAFBI6SkAAABBUAQAACAIigAA\nAISuehRhRCW9uHP0MT55/qLocVPO8QFg/aac2dbjuZvOKmYUgiIwvB4XKjX9659/Lnrcvn80+G5T\ntuMpALA8pacAAAAEQREAAIDQXelp1oV/vNh1tGKUOvlR+h6mGmUeAAD8Zur6p8c14hJrve6C4ts+\n/ej7Ll/oEjfXlw8+Rjjo210b0HhNAQDGUdLvv9T6UOkpAAAAQVAEAAAgCIoAAACErnsUN5vymt21\n9jICrNHZ+f5nLpb0dgMAZboPiiMTfgGA2qw3kvFgFEpPAQAACIIiAAAAQelpo6b055TSxzOmJ89f\nLH0JrMy+c+pxpesAAObXTFBU7z0mr3uaazyEQgCgV9aHaanxUHoKAABAEBQBAAAIgiIAAABBUAQA\nACA0s5kNyc6kwNq8/sPvN6+eXSx9GQBAAXcUAQAACIIiAAAAQVAEAAAgnGy326WvAQAAgIa4owgA\nAEAQFAEAAAiCIgAAAEFQBAAAIAiKAAAABEERAACA8D8FjwRSVQxxagAAAABJRU5ErkJggg==\n",
111111
"text/plain": [
112-
"<matplotlib.figure.Figure at 0x7f8f3beb8b70>"
112+
"<matplotlib.figure.Figure at 0x7f0dc9c61240>"
113113
]
114114
},
115115
"metadata": {},

0 commit comments

Comments
 (0)