-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
288 lines (249 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import math
import time
import datetime
import torch
import torch.nn as nn
from models import TENet,LSTNet,RNN,rTEGNN
# from MTGNN import gtnet,DataLoaderS
import numpy as np
import importlib
import sys
from utils import *
from ml_eval import *
import Optim
from torch.optim.lr_scheduler import LambdaLR
np.seterr(divide='ignore',invalid='ignore')
def evaluate(data, X, Y, model, evaluateL2, evaluateL1, batch_size):
model.eval()
total_loss = 0
total_loss_l1 = 0
n_samples = 0
predict = None
test = None
with torch.no_grad():
for X, Y in data.get_batches(X, Y, batch_size, False):
if X.shape[0]!=args.batch_size:
break
output = model(X)
if predict is None:
predict = output
test = Y
else:
predict = torch.cat((predict,output))
test = torch.cat((test, Y))
scale = data.scale.expand(output.size(0), data.m)
# print('pred',output * scale)
# print('y',Y * scale)
#
# print('n_sample',output.size(0) * data.m)
# print('mse loss',evaluateL2(output * scale, Y * scale).item())
# print('l1 loss', evaluateL1(output * scale, Y * scale).item())
# print()
total_loss += evaluateL2(output * scale, Y * scale).item()
total_loss_l1 += evaluateL1(output * scale, Y * scale).item()
n_samples += (output.size(0) * data.m)
del scale,X,Y
torch.cuda.empty_cache()
rmse = math.sqrt(total_loss/n_samples)
rse = math.sqrt(total_loss / n_samples)/data.rse
rae = (total_loss_l1/n_samples)/data.rae
predict = predict.data.cpu().numpy()
Ytest = test.data.cpu().numpy()
sigma_p = (predict).std(axis = 0)
sigma_g = (Ytest).std(axis = 0)
mean_p = predict.mean(axis = 0)
mean_g = Ytest.mean(axis = 0)
index = (sigma_g!=0)
correlation = ((predict - mean_p) * (Ytest - mean_g)).mean(axis = 0)/(sigma_p * sigma_g)
correlation = (correlation[index]).mean ()
mae = total_loss_l1/n_samples
# if np.isnan(correlation):
# print(sigma_g)
# (rse,rae,correlation) = (0,0,0)
return rmse,rse, mae,rae,correlation
def train(data, X, Y, model, criterion, optim, batch_size):
model.train()
total_loss = 0
n_samples = 0
# optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
# self.scheduler = optim.lr_criterionscheduler.StepLR(self.optimizer, step_size=3, gamma=0.1)
# scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 0.1) # 1/(epoch+1))
for X, Y in data.get_batches(X, Y, batch_size, True):
if X.shape[0]!=args.batch_size:
break
model.zero_grad()
# optimizer.zero_grad()
id = [0, 1, 2, 3, 4, 5, 6, 7]
id = torch.tensor(id).to(device)
output = model(X)
scale = data.scale.expand(output.size(0), data.m)
loss = criterion(output * scale, Y * scale)
loss.backward()
# optimizer.step()
grad_norm = optim.step()
total_loss += loss.data.item()
n_samples += (output.size(0) * data.m)
# del loss,output,scale,grad_norm
torch.cuda.empty_cache()
return total_loss / n_samples
parser = argparse.ArgumentParser(description='Multivariate Time series forecasting')
parser.add_argument('--data', type=str, default="data/exchange_rate.txt",help='location of the data file')
parser.add_argument('--n_e', type=int, default=8,help='The number of graph nodes')
parser.add_argument('--model', type=str, default='rTEGNN',help='')
parser.add_argument('--k_size', type=list, default=[3,5,7],help='number of CNN kernel sizes')
parser.add_argument('--window', type=int, default=32,help='window size')
parser.add_argument('--decoder', type=str, default= 'rGNN',help = 'type of decoder layer')
parser.add_argument('--horizon', type=int, default= 3)
parser.add_argument('--num_adj', type=int, default= 3)
parser.add_argument('--A', type=str, default="TE/exte.txt",help='A')
parser.add_argument('--B', type=str, default="TE/ex_corr.txt",help='B')
parser.add_argument('--highway_window', type=int, default=0
, help='The window size of the highway component')
parser.add_argument('--epochs', type=int, default=100,help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=4, metavar='N',help='batch size')
parser.add_argument('--skip_mode', type=str, default="none",help='skipmode')
parser.add_argument('--attention_mode', type=str, default="naive",help='attention_mode')
parser.add_argument('--channel_size', type=int, default=12,help='the channel size of the CNN layers')
parser.add_argument('--hid1', type=int, default=40,help='the hidden size of the GNN layers')
parser.add_argument('--hid2', type=int, default=10,help='the hidden size of the GNN layers')
parser.add_argument('--hidRNN', type=int, default=100, help='number of RNN hidden units each layer')
parser.add_argument('--rnn_layers', type=int, default=1, help='number of RNN hidden layers')
parser.add_argument('--hidCNN', type=int, default=100, help='number of CNN hidden units (channels)')
parser.add_argument('--CNN_kernel', type=int, default=6, help='the kernel size of the CNN layers')
parser.add_argument('-n_head', type=int, default=8)
parser.add_argument('-d_k', type=int, default=64)
parser.add_argument('-d_v', type=int, default=64)
# parser.add_argument('--clip', type=float, default=10,help='gradient clipping')
# parser.add_argument('--dropout', type=float, default=0.2,help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--seed', type=int, default=54321,help='random seed')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--log_interval', type=int, default=2000, metavar='N',help='report interval')
parser.add_argument('--save', type=str, default='model/model.pt',help='path to save the final model')
parser.add_argument('--cuda', type=str, default=True)
parser.add_argument('--optim', type=str, default='adam')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--L1Loss', type=bool, default=True)
parser.add_argument('--skip', type=float, default=24)
parser.add_argument('--hidSkip', type=int, default=10)
parser.add_argument('--normalize', type=int, default=2)
parser.add_argument('--output_fun', type=str, default='Linear')
# MTGNN args
parser.add_argument('--device',type=str,default='cuda:0',help='')
parser.add_argument('--gcn_true', type=bool, default=True, help='whether to add graph convolution layer')
parser.add_argument('--buildA_true', type=bool, default=True, help='whether to construct adaptive adjacency matrix')
parser.add_argument('--gcn_depth',type=int,default=2,help='graph convolution depth')
parser.add_argument('--num_nod'
'es',type=int,default=8,help='number of nodes/variables')
parser.add_argument('--dropout',type=float,default=0.2,help='dropout rate')
parser.add_argument('--subgraph_size',type=int,default=4,help='k')
parser.add_argument('--node_dim',type=int,default=40,help='dim of nodes')
parser.add_argument('--dilation_exponential',type=int,default=2,help='dilation exponential')
parser.add_argument('--conv_channels',type=int,default=12,help='convolution channels')
parser.add_argument('--residual_channels',type=int,default=12,help='residual channels')
parser.add_argument('--skip_channels',type=int,default=32,help='skip channels')
parser.add_argument('--end_channels',type=int,default=64,help='end channels')
parser.add_argument('--in_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--seq_in_len',type=int,default=32,help='input sequence length')
parser.add_argument('--seq_out_len',type=int,default=1,help='output sequence length')
parser.add_argument('--layers',type=int,default=5,help='number of layers')
parser.add_argument('--weight_decay',type=float,default=0.00001,help='weight decay rate')
parser.add_argument('--clip',type=int,default=10,help='clip')
parser.add_argument('--propalpha',type=float,default=0.05,help='prop alpha')
parser.add_argument('--tanhalpha',type=float,default=3,help='tanh alpha')
parser.add_argument('--num_split',type=int,default=1,help='number of splits for graphs')
parser.add_argument('--step_size',type=int,default=100,help='step_size')
args = parser.parse_args()
args.cuda = args.gpu is not None
if args.cuda:
torch.cuda.set_device(args.gpu)
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
Data = Data_utility(args.data, 0.6,0.2, args.cuda, args.horizon, args.window, args.normalize)
device = torch.device(args.device)
#MTGNN model
if args.model == 'MTEGNN':
model = eval(args.model).Model(args,args.gcn_true, args.buildA_true, args.gcn_depth, args.num_nodes,
device, dropout=args.dropout, subgraph_size=args.subgraph_size,
node_dim=args.node_dim, dilation_exponential=args.dilation_exponential,
conv_channels=args.conv_channels, residual_channels=args.residual_channels,
skip_channels=args.skip_channels, end_channels= args.end_channels,
seq_length=args.seq_in_len, in_dim=args.in_dim, out_dim=args.seq_out_len,
layers=args.layers, propalpha=args.propalpha, tanhalpha=args.tanhalpha, layer_norm_affline=False)
else:
model = eval(args.model).Model(args,Data)
#
if args.cuda:
model.cuda()
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
if args.L1Loss:
criterion = nn.L1Loss(size_average = False).cuda()
else:
criterion = nn.MSELoss(size_average = False).cuda()
evaluateL2 = nn.MSELoss(size_average = False).cuda()
evaluateL1 = nn.L1Loss(size_average = False).cuda()
if args.cuda:
criterion = criterion.cuda()
evaluateL1 = evaluateL1.cuda()
evaluateL2 = evaluateL2.cuda()
best_val = 111110
optim = Optim.Optim(
model.parameters(), args.optim, args.lr, args.clip,lr_decay=args.weight_decay
)
# print('begin var')
# test_mse,test_acc, test_mae,test_rae, test_corr = evaluate_VAR(args,evaluateL2,evaluateL1)
# print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_mse,test_acc, test_mae,test_rae, test_corr))
#
# sys.exit()
ttime = str(datetime.datetime.now()).replace(' ','-')
save_model = args.save+ttime
try:
print('begin training')
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train_loss = train(Data, Data.train[0], Data.train[1], model, criterion, optim, args.batch_size)
train_time = time.time()-epoch_start_time
val_rmse,val_rse, val_mae,val_rae, val_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1, args.batch_size)
print('| end of epoch {:3d} | time: {:5.4f}s | train_loss {:5.5f} | valid rmse {:5.5f} |valid rse {:5.5f} | valid mae {:5.5f} | valid rae {:5.5f} |valid corr {:5.5f}'.format(epoch, train_time, train_loss, val_rmse,val_rse, val_mae,val_rae, val_corr))
# Save the model if the validation loss is the best we've seen so far.
# if str(val_corr) == 'nan':
# sys.exit()
# if float(val_corr)<0.4:
# sys.exit()
val = val_mae
if args.decoder == 'GIN':
val = val_rse
if val < best_val:
with open(save_model, 'wb') as f:
torch.save(model, f)
best_val = val
epoch_test_time = time.time()
test_rmse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_rmse,test_acc, test_mae,test_rae, test_corr))
print(time.time()-epoch_test_time)
else:
test_rmse, test_acc, test_mae, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model,
evaluateL2, evaluateL1, args.batch_size)
print("\n test rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(
test_rmse, test_acc, test_mae, test_rae, test_corr))
# if epoch % 5 == 0:
# test_rmse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
# print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_rmse,test_acc, test_mae,test_rae, test_corr))
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(save_model, 'rb') as f:
model = torch.load(f)
test_mse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_mse,test_acc, test_mae,test_rae, test_corr))
with open('results.txt','a+') as f1:
f1.write(str(args.model)+' '+str(args.data) + ' '+str(args.horizon) + ' '+str(args.num_adj)+' '+str(args.channel_size)+' '+str(args.hid1)+' '+str(args.hid2)+ ' '+str(args.highway_window)+' '+str(args.window)+' '+save_model+'\n'+str(test_mse)+' '+str(test_acc)+ ' '+str(test_mae)+' '+str(test_rae)+' '+str(test_corr))
f1.write('\n')
# time.sleep(300)