-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
185 lines (161 loc) · 9.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import math
import time
import Optim
import torch
import torch.nn as nn
import numpy as np
import importlib
import sys
from utils import *
from ml_eval import *
from models import TENet,rTEGNN
from eval import evaluate
np.seterr(divide='ignore',invalid='ignore')
def train(data, X, Y, model, criterion, optim, batch_size):
model.train()
total_loss = 0
n_samples = 0
for X, Y in data.get_batches(X, Y, batch_size, True):
if X.shape[0]!=args.batch_size:
break
model.zero_grad()
output = model(X)
scale = data.scale.expand(output.size(0), data.m)
loss = criterion(output * scale, Y * scale)
loss.backward()
grad_norm = optim.step()
total_loss += loss.data.item()
n_samples += (output.size(0) * data.m)
torch.cuda.empty_cache()
return total_loss / n_samples
parser = argparse.ArgumentParser(description='Multivariate Time series forecasting')
parser.add_argument('--data', type=str, default="data/exchange_rate.txt",help='location of the data file')
parser.add_argument('--n_e', type=int, default=8,help='The number of graph nodes')
parser.add_argument('--model', type=str, default='rTEGNN',help='')
parser.add_argument('--k_size', type=list, default=[3,5,7],help='number of CNN kernel sizes')
parser.add_argument('--window', type=int, default=32,help='window size')
parser.add_argument('--decoder', type=str, default= 'GNN',help = 'type of decoder layer')
parser.add_argument('--horizon', type=int, default= 3)
parser.add_argument('--num_adj', type=int, default= 3)
parser.add_argument('--A', type=str, default="TE/exte.txt",help='A')
parser.add_argument('--B', type=str, default="TE/nasdaq_corr.txt",help='B')
parser.add_argument('--highway_window', type=int, default=0, help='The window size of the highway component')
parser.add_argument('--channel_size', type=int, default=12,help='the channel size of the CNN layers')
parser.add_argument('--hid1', type=int, default=40,help='the hidden size of the GNN layers')
parser.add_argument('--hid2', type=int, default=10,help='the hidden size of the GNN layers')
parser.add_argument('--clip', type=float, default=10,help='gradient clipping')
parser.add_argument('--epochs', type=int, default=100,help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=4, metavar='N',help='batch size')
parser.add_argument('--dropout', type=float, default=0.2,help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--seed', type=int, default=54321,help='random seed')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--log_interval', type=int, default=2000, metavar='N',help='report interval')
parser.add_argument('--save', type=str, default='model/model.pt',help='path to save the final model')
parser.add_argument('--cuda', type=str, default=True)
parser.add_argument('--optim', type=str, default='adam')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--L1Loss', type=bool, default=True)
parser.add_argument('--normalize', type=int, default=2)
parser.add_argument('--output_fun', type=str, default='Linear')
# LSTNet args
parser.add_argument('--skip', type=float, default=24)
parser.add_argument('--hidSkip', type=int, default=10)
parser.add_argument('--skip_mode', type=str, default="none",help='skipmode')
parser.add_argument('--attention_mode', type=str, default="naive",help='attention_mode')
parser.add_argument('--hidRNN', type=int, default=100, help='number of RNN hidden units each layer')
parser.add_argument('--rnn_layers', type=int, default=1, help='number of RNN hidden layers')
parser.add_argument('--hidCNN', type=int, default=100, help='number of CNN hidden units (channels)')
parser.add_argument('--CNN_kernel', type=int, default=6, help='the kernel size of the CNN layers')
# MTGNN args
parser.add_argument('--device',type=str,default='cuda:0',help='')
parser.add_argument('--gcn_true', type=bool, default=True, help='whether to add graph convolution layer')
parser.add_argument('--buildA_true', type=bool, default=True, help='whether to construct adaptive adjacency matrix')
parser.add_argument('--gcn_depth',type=int,default=2,help='graph convolution depth')
parser.add_argument('--num_nodes',type=int,default=8,help='number of nodes/variables')
parser.add_argument('--dropout',type=float,default=0.2,help='dropout rate')
parser.add_argument('--subgraph_size',type=int,default=4,help='k')
parser.add_argument('--node_dim',type=int,default=40,help='dim of nodes')
parser.add_argument('--dilation_exponential',type=int,default=2,help='dilation exponential')
parser.add_argument('--conv_channels',type=int,default=12,help='convolution channels')
parser.add_argument('--residual_channels',type=int,default=12,help='residual channels')
parser.add_argument('--skip_channels',type=int,default=32,help='skip channels')
parser.add_argument('--end_channels',type=int,default=64,help='end channels')
parser.add_argument('--in_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--seq_in_len',type=int,default=32,help='input sequence length')
parser.add_argument('--seq_out_len',type=int,default=1,help='output sequence length')
parser.add_argument('--layers',type=int,default=5,help='number of layers')
parser.add_argument('--weight_decay',type=float,default=0.00001,help='weight decay rate')
parser.add_argument('--clip',type=int,default=10,help='clip')
parser.add_argument('--propalpha',type=float,default=0.05,help='prop alpha')
parser.add_argument('--tanhalpha',type=float,default=3,help='tanh alpha')
parser.add_argument('--num_split',type=int,default=1,help='number of splits for graphs')
parser.add_argument('--step_size',type=int,default=100,help='step_size')
args = parser.parse_args()
args.cuda = args.gpu is not None
if args.cuda:
torch.cuda.set_device(args.gpu)
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
Data = Data_utility(args.data, 0.6, 0.2, args.cuda, args.horizon, args.window, args.normalize)
print(Data.rse)
model = eval(args.model).Model(args,Data)
#
if args.cuda:
model.cuda()
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
if args.L1Loss:
criterion = nn.L1Loss(size_average = False).cpu()
else:
criterion = nn.MSELoss(size_average = False).cpu()
evaluateL2 = nn.MSELoss(size_average = False).cpu()
evaluateL1 = nn.L1Loss(size_average = False).cpu()
if args.cuda:
criterion = criterion.cuda()
evaluateL1 = evaluateL1.cuda()
evaluateL2 = evaluateL2.cuda()
best_val = 111110
optim = Optim.Optim(
model.parameters(), args.optim, args.lr, args.clip,
)
try:
print('begin training')
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train_loss = train(Data, Data.train[0], Data.train[1], model, criterion, optim, args.batch_size)
val_rmse,val_rse, val_mae,val_rae, val_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1, args.batch_size)
print('| end of epoch {:3d} | time: {:5.2f}s | train_loss {:5.5f} | valid rmse {:5.5f} |valid rse {:5.5f} | valid mae {:5.5f} | valid rae {:5.5f} |valid corr {:5.5f}'.format(epoch, (time.time() - epoch_start_time), train_loss, val_rmse,val_rse, val_mae,val_rae, val_corr))
# Save the model if the validation loss is the best we've seen so far.
if str(val_corr) == 'nan':
sys.exit()
val = val_mae
if args.decoder == 'GIN':
val = val_rse
if val < best_val:
with open(args.save, 'wb') as f:
torch.save(model, f)
best_val = val
test_rmse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_rmse,test_acc, test_mae,test_rae, test_corr))
else:
test_rmse, test_acc, test_mae, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model,
evaluateL2, evaluateL1, args.batch_size)
print("\n test rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(
test_rmse, test_acc, test_mae, test_rae, test_corr))
# if epoch % 5 == 0:
# test_rmse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
# print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_rmse,test_acc, test_mae,test_rae, test_corr))
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
test_mse,test_acc, test_mae,test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1, args.batch_size)
print ("\ntest rmse {:5.5f} |test rse {:5.5f} | test mae {:5.5f} | test rae {:5.5f} |test corr {:5.5f}".format(test_mse,test_acc, test_mae,test_rae, test_corr))