forked from CloudLab-NEU/SyMer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (124 loc) · 5.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gc
import os
import re
from metric import evaluate
import torch
import h5py
import time
import torch.nn.init as init
from torch.utils.data import DataLoader
from dataset import SymerDataset
from args import get_args
from common import get_dict, Common
from model import SyMer
from opt import LossCompute, NoamOpt, LabelSmoothing
from utils.eval import greedy_decoder, print_predict
def save_model(save_name, epoch, model, optimizer,
step, warmup):
state = {
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'step': step,
'opt_warmup': warmup
}
torch.save(state, save_name)
print("Model saved to:", save_name)
def run_train_epoch(data_loader, model, loss_compute, epoch, target_dict, log_interval=2500, amp=False):
total_loss = 0
total_step = 0
time_start = time.time()
epoch_start = time.time()
for i, batch in enumerate(data_loader):
[input_node, ver_indices, hor_indices, target, input_terminal] = batch
outputs = model.forward(input_node, input_terminal,
ver_indices, hor_indices, target)
n_tokens = (target != target_dict[Common.PAD]).data.sum()
loss = loss_compute(outputs, target, n_tokens)
total_loss = total_loss + loss
total_step += 1
if i % log_interval == 1:
time_end = time.time()
print('Epoch:', '%03d' % epoch, ', Iternum:', '%05d' % i, ', loss=',
'{:.6f}'.format(loss), ', lr={:.6f}'.format(loss_compute.opt.optimizer.param_groups[0]['lr']),
", Runs: {:.0f}s".format(time_end - time_start))
time_start = time_end
epoch_end = time.time()
print("Epoch runs {:.0f}s:".format(epoch_end - epoch_start))
return total_loss / total_step
def run_eval_epoch(args, data_loader, model, target_dict, save_name):
with open("output/{}.txt".format(save_name), "w") as file:
for i, batch in enumerate(data_loader):
[input_node, ver_indices, hor_indices, target, input_terminal] = batch
with torch.no_grad():
outputs = greedy_decoder(args=args, model=model,
enc_input=[input_node, input_terminal, ver_indices, hor_indices],
start_symbol=target_dict[Common.BOS],
max_target_length=args.max_deepcom_target_length)
print_line = print_predict(target_dict, outputs, target, False)
file.writelines("\n".join(print_line) + "\n")
print("eval file saved as 'output/{}.txt'".format(save_name))
if __name__ == '__main__':
args = get_args()
gc.collect()
torch.cuda.empty_cache()
node_dict, terminal_dict, target_dict = get_dict(args.data_path)
trainLoader = DataLoader(
SymerDataset(args=args, file=args.train_path,
data_size=args.train_num, node_dict=node_dict,
terminal_dict=terminal_dict, target_dict=target_dict),
batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers,
drop_last=True
)
testLoader = DataLoader(
SymerDataset(args=args, file=args.test_path,
data_size=args.test_num,
node_dict=node_dict,
terminal_dict=terminal_dict, target_dict=target_dict),
batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers,
drop_last=True
)
symer = SyMer(args, node_dict, terminal_dict, target_dict).cuda()
criterion = LabelSmoothing(size=len(target_dict), padding_idx=target_dict[Common.PAD],
smoothing=0.1)
criterion.cuda()
epoch_start = 0
print(f"Params: \n{args}")
if args.load_model:
_epoch_idx = re.search("\d", args.load_model).start()
checkpoint = torch.load(args.load_model, map_location='cpu')
symer.load_state_dict(checkpoint['model'])
epoch_start = checkpoint['epoch'] + 1
model_opt = NoamOpt(d_model=args.d_model, warmup=checkpoint['opt_warmup'],
optimizer=torch.optim.Adam(
symer.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9),
start_step=checkpoint['step'],
scale=args.lr_scale)
model_opt.load_optimizer(checkpoint['optimizer'])
args.save_name = args.load_model[6:_epoch_idx] if (args.save_name == "n") else args.save_name
else:
model_opt = NoamOpt(d_model=args.d_model, warmup=4000,
optimizer=torch.optim.Adam(
symer.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9),
start_step=0,
scale=args.lr_scale)
if args.init:
for p in symer.parameters():
if p.dim() > 1:
init.xavier_uniform_(p)
print("-------{}-------".format(time.asctime(time.localtime(time.time()))))
for epoch in range(epoch_start, epoch_start + args.epoch):
symer.train()
loss = run_train_epoch(data_loader=trainLoader, model=symer,
loss_compute=LossCompute(target_dict, criterion, model_opt, amp=args.amp), epoch=epoch,
target_dict=target_dict, amp=args.amp, log_interval=args.log_interval)
symer.eval()
run_eval_epoch(args, testLoader, symer, target_dict, args.save_name + str(epoch))
rouge_score, ba_score, meteor_score = evaluate(args.save_name + str(epoch), True)
save_name = "model/{}{}_Ba{}_Me{}_Rl{}.pt".format(args.save_name, str(epoch),
ba_score, meteor_score, rouge_score)
save_model(save_name, epoch, symer,
model_opt.optimizer,
model_opt.get_step(), model_opt.warmup)