Skip to content

Commit 40c9098

Browse files
authored
Enable markdown files in typo checker (mlflow#14499)
Signed-off-by: Daniel Lok <[email protected]>
1 parent a1c9f88 commit 40c9098

File tree

8 files changed

+17
-15
lines changed

8 files changed

+17
-15
lines changed

.pre-commit-config.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -141,7 +141,7 @@ repos:
141141
- id: typos
142142
name: typos
143143
entry: dev/typos.sh
144-
files: '(\.py$|^docs/.*\.mdx?$)'
144+
files: '\.(py$|mdx?$)'
145145
language: system
146146
stages: [pre-commit]
147147
require_serial: true

CHANGELOG.md

+7-7
Original file line numberDiff line numberDiff line change
@@ -230,7 +230,7 @@ Bug fixes:
230230

231231
Documentation updates:
232232

233-
- [Docs] Fixed typo in docs: endpoing -> endpoint (#13478, @JAMNESIA)
233+
- [Docs] Fixed typo in docs (#13478, @JAMNESIA)
234234
- [Docs] Improve CLI docs - attention about setting MLFLOW_TRACKING_URI (#13465, @BartoszLitwiniuk)
235235
- [Docs] Add documentation for infer_signature usage with GenAI flavors (#13407, @serena-ruan)
236236

@@ -256,7 +256,7 @@ initially with support for callable GenAI evaluation metrics.
256256
inclusion of the interface type to the response structure to allow for greater integration compatibility.
257257
(#13191, #13180, #13143, @daniellok-db, #13102, #13071, @BenWilson2)
258258

259-
- **Callable GenAI Evaluation Metrics** - As the intial step in a much broader expansion of the functionalities of `mlflow.evaluate` for
259+
- **Callable GenAI Evaluation Metrics** - As the initial step in a much broader expansion of the functionalities of `mlflow.evaluate` for
260260
GenAI use cases, we've converted the GenAI evaluation metrics to be callable. This allows you to use them directly in packages that support
261261
callable GenAI evaluation metrics, as well as making it simpler to debug individual responses when prototyping solutions. (#13144, @serena-ruan)
262262

@@ -752,7 +752,7 @@ Bug fixes:
752752
- [Model Registry] Fix a registry configuration error that occurs within Databricks serverless clusters (#11719, @WeichenXu123)
753753
- [Model Registry] Delete registered model permissions when deleting the underlying models (#11601, @B-Step62)
754754
- [Model Registry] Disallow `%` in model names to prevent URL mangling within the UI (#11474, @daniellok-db)
755-
- [Models] Fix an issue where crtically important environment configurations were not being captured as langchain dependencies during model logging (#11679, @serena-ruan)
755+
- [Models] Fix an issue where critically important environment configurations were not being captured as langchain dependencies during model logging (#11679, @serena-ruan)
756756
- [Models] Patch the `LangChain` loading functions to handle uncorrectable pickle-related exceptions that are thrown when loading a model in certain versions (#11582, @B-Step62)
757757
- [Models] Fix a regression in the `sklearn` flavor to reintroduce support for custom prediction methods (#11577, @B-Step62)
758758
- [Models] Fix an inconsistent and unreliable implementation for batch support within the `langchain` flavor (#11485, @WeichenXu123)
@@ -2715,7 +2715,7 @@ MLflow 1.6.0 includes several new features, including a better runs table interf
27152715
Features:
27162716

27172717
- Adds a new runs table column view based on `ag-grid` which adds functionality for nested runs, serverside sorting, column reordering, highlighting, and more. (#2251, @Zangr)
2718-
- Adds contour plot to the run comparsion page to better support parameter tuning (#2225, @harupy)
2718+
- Adds contour plot to the run comparison page to better support parameter tuning (#2225, @harupy)
27192719
- If you use EarlyStopping with Keras autologging, MLflow now automatically captures the best model trained and the associated metrics (#2301, #2219, @juntai-zheng)
27202720
- Adds autologging functionality for LightGBM and XGBoost flavors to log feature importance, metrics per iteration, the trained model, and more. (#2275, #2238, @harupy)
27212721
- Adds an experimental mlflow.spark.autolog() API for automatic logging of Spark datasource information to the current active run. (#2220, @smurching)
@@ -3157,7 +3157,7 @@ Features:
31573157
- [Tracking] Include the Git repository URL as a tag when tracking an MLflow run within a Git repository (#741, @whiletruelearn, @mateiz)
31583158
- [UI] Improved runs UI performance by using a react-virtualized table to optimize row rendering (#765, #762, #745, @smurching)
31593159
- [UI] Significant performance improvements for rendering run metrics, tags, and parameter information (#764, #747, @smurching)
3160-
- [UI] Scatter plots, including run comparsion plots, are now interactive (#737, @mateiz)
3160+
- [UI] Scatter plots, including run comparison plots, are now interactive (#737, @mateiz)
31613161
- [UI] Extended CSRF support by allowing the MLflow UI server to specify a set of expected headers that clients should set when making AJAX requests (#733, @aarondav)
31623162

31633163
Bug fixes and documentation updates:
@@ -3295,7 +3295,7 @@ Features:
32953295
- [UI] Added icons to source names in MLflow Experiments UI (#381, @andrewmchen)
32963296
- [UI] Added support to view `.log` and `.tsv` files from MLflow artifacts UI (#393, @Shenggan; #433, @whiletruelearn)
32973297
- [UI] Run names can now be edited from within the MLflow UI (#382, @smurching)
3298-
- [Serving] Added `--host` option to `mlflow serve` to allow listening on non-local addressess (#401, @hamroune)
3298+
- [Serving] Added `--host` option to `mlflow serve` to allow listening on non-local addresses (#401, @hamroune)
32993299
- [Serving/SageMaker] SageMaker serving takes an AWS region argument (#366, @dbczumar)
33003300
- [Python] Added environment variables to support providing HTTP auth (username, password, token) when talking to a remote MLflow tracking server (#402, @aarondav)
33013301
- [Python] Added support to override S3 endpoint for S3 artifactory (#451, @hamroune)
@@ -3374,7 +3374,7 @@ Bug fixes:
33743374
- Fix numpy array serialization for int64 and other related types, allowing pyfunc to return such results (#240, @arinto)
33753375
- Fix DBFS artifactory calling `log_artifacts` with binary data (#295, @aarondav)
33763376
- Fix Run Command shown in UI to reproduce a run when the original run is targeted at a subdirectory of a Git repo (#294, @adrian555)
3377-
- Filter out ubiquitious dtype/ufunc warning messages (#317, @aarondav)
3377+
- Filter out ubiquitous dtype/ufunc warning messages (#317, @aarondav)
33783378
- Minor bug fixes and documentation updates (#261, @stbof; #279, @dmatrix; #313, @rbang1, #320, @yassineAlouini; #321, @tomasatdatabricks; #266, #282, #289, @smurching; #267, #265, @aarondav; #256, #290, @ToonKBC; #273, #263, @mateiz; #272, #319, @adrian555; #277, @aadamson; #283, #296, @andrewmchen)
33793379

33803380
## 0.4.2 (2018-08-07)

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ To install the MLflow Python package, run the following command:
3737
pip install mlflow
3838
```
3939

40-
Alternatively, you can install MLflow from on differnet package hosting platforms:
40+
Alternatively, you can install MLflow from on different package hosting platforms:
4141

4242
| | |
4343
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |

examples/gateway/bedrock/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,4 +4,4 @@ To view an example of a Bedrock endpoint configuration, see [the configuration e
44

55
## Credentials
66

7-
Valid AWS credentials are required for this example. Set `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` to valid credentials, or run in an environemnt with those variables set.
7+
Valid AWS credentials are required for this example. Set `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` to valid credentials, or run in an environment with those variables set.

examples/synapseml/autologging.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ SynapseML supports autologging for every model in the library.
55

66
Install SynapseML library following this [guidance](https://microsoft.github.io/SynapseML/docs/getting_started/installation/)
77

8-
Default mlflow [log_model_allowlist file](https://github.com/mlflow/mlflow/blob/master/mlflow/pyspark/ml/log_model_allowlist.txt) already includes some SynapseML models. To enable more models, you could use `mlflow.pyspark.ml.autolog(log_moddel_allowlist=YOUR_SET_OF_MODELS)` function, or follow the below guidance by specifying a link to the file and update spark configuration.
8+
Default mlflow [log_model_allowlist file](https://github.com/mlflow/mlflow/blob/master/mlflow/pyspark/ml/log_model_allowlist.txt) already includes some SynapseML models. To enable more models, you could use `mlflow.pyspark.ml.autolog(log_model_allowlist=YOUR_SET_OF_MODELS)` function, or follow the below guidance by specifying a link to the file and update spark configuration.
99

1010
To enable autologging with your custom log_model_allowlist file:
1111

mlflow/R/mlflow/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ mlflow_log_metric("intercept", model$coefficients[["(Intercept)"]])
138138
### Parameters
139139

140140
You will often want to parameterize your scripts to support running and
141-
tracking multiple experiments. Ypu can define parameters with type under
141+
tracking multiple experiments. You can define parameters with type under
142142
a `params_example.R` example as follows:
143143

144144
```r

pyproject.toml

+2
Original file line numberDiff line numberDiff line change
@@ -325,6 +325,8 @@ extend-ignore-re = [
325325
"lightning",
326326
# `typos` flags 'lok' as a typo of 'look'
327327
"(?i)daniel lok",
328+
# GitHub user mentions
329+
"@[a-z0-9-]+",
328330
"PNGs",
329331
# Azure Container Instances
330332
"\\(ACI\\)",

tests/examples/README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -16,11 +16,11 @@ directory the example code is found, i.e., it is located in `examples/new_exampl
1616
The `@pytest.mark.mark.parametrize` decorator for `def test_mlflow_run_example(directory, params):`
1717
is updated.
1818

19-
If the example is executed by `cd examples/new_example_dir && mlflow run . -P parm1=99 -P parm2=3`, then
19+
If the example is executed by `cd examples/new_example_dir && mlflow run . -P param1=99 -P param2=3`, then
2020
this `tuple` is added to the decorator list
2121

2222
```
23-
("new_example_dir", ["-P", "parm1=123", "-P", "parm2=99"])
23+
("new_example_dir", ["-P", "param1=123", "-P", "param2=99"])
2424
```
2525

2626
as shown below
@@ -29,7 +29,7 @@ as shown below
2929
@pytest.mark.parametrize(("directory", "params"), [
3030
("sklearn_elasticnet_wine", ["-P", "alpha=0.5"]),
3131
(os.path.join("sklearn_elasticnet_diabetes", "linux"), []),
32-
("new_example_dir", ["-P", "parm1=123", "-P", "parm2=99"]),
32+
("new_example_dir", ["-P", "param1=123", "-P", "param2=99"]),
3333
])
3434
def test_mlflow_run_example(directory, params):
3535
```

0 commit comments

Comments
 (0)