-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunner.py
368 lines (346 loc) · 14.2 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import itertools
import os
import subprocess
from typing import Any, Dict, Sequence
class ExperimentRunner(object):
'''
An experiment runner acts as a scheduler for multiple runs of the same
experiment, or many experiments, through a parameters grid.
'''
def __init__(self, interpreter: str):
'''
Constructs an experiments runner.
Parameters
----------
interpreter: str
Command line python interpreter, i.e. '/bin/python'
'''
self.interpreter = interpreter
# command of experiments being executed after scheduling
self.commands = []
def schedule(self, script: str, grid: Dict[str, Sequence[Any]], enable: bool = True) -> Any:
'''
Schedules a set of multiple runs (using the `grid`) of the same experiment.
Parameters
----------
script: str
Path of python script to be invoked, i.e. `experiments/script.py`
grid: Dict[str, Sequence[Any]]
Grid of multiple command line arguments passed to the script for
multiple executions of the same experiment
enable: bool
If `True` (by default) then runs the experiments
Returns
-------
Any
`ExperimentRunner` instance
'''
if enable:
# constructs a command for each script execution with a certain combination of command line parameters
self.commands.extend([ ExperimentRunner.command(self.interpreter, script, params) for params in ExperimentRunner.expand(grid) ])
# yields instance
return self
def run(self):
'''
Runs all the experiments (over multiple grid explorations) scheduled up until now.
'''
for i, experiment in enumerate(self.commands):
print(f'[+] running experiment {i + 1}/{len(self.commands)}')
# invokes a subprocess whose stdout is connected to current shell
# and waits for termination
process = subprocess.Popen(experiment, shell = True)
process.wait()
process.kill()
@staticmethod
def command(interpreter: str, script: str, params: Dict[str, Any]) -> str:
'''
Constructs a shell command for executing python script within the environment.
Parameters
----------
script: str
Path of python script to be invoked
params: Dict[str, Any]
Combination of parameters
Returns
-------
str
Constructed command
Examples
--------
>>> ExperimentRunner.command('./env/bin/python3', script = 'script.py', params = { 'lr': 0.9, 'niid': True, 'algorithm': ('fedsr', 128, 0.1, 0.01) })
>>> './env/bin/python3 script.py --lr 0.9 --niid --algorithm fedsr 128 0.1 0.01'
'''
result = f'{interpreter} {script}'
# attach command line parameters according to their type
for name, value in params.items():
if value is None:
continue
elif type(value) is bool:
if value:
result += f' --{name}'
elif type(value) in [tuple, list]:
result += f" --{name} {' '.join([ str(x) for x in value ])}"
else:
result += f' --{name} {value}'
# yields constructed shell command
return result
@staticmethod
def expand(grid: Dict[str, Sequence[Any]]) -> Sequence[Dict[str, Any]]:
'''
Flattens a parameters grid by constructing each single parameters combination.
Parameters
----------
grid: Dict[str, Sequence[Any]]
Parameters grid
Returns
-------
Sequence[Dict[str, Any]]
List of each combination of parameters
Examples
--------
>>> grid = { 'lr': [ 1e-3, 1e-2 ], 'tau': [ 0.9, 0.99 ], 'seed': [ 42 ] }
>>> ExperimentRunner.expand(grid)
>>> [
>>> { 'lr': 1e-3, 'tau': 0.9, 'seed': 42 },
>>> { 'lr': 1e-3, 'tau': 0.99, 'seed': 42 },
>>> { 'lr': 1e-2, 'tau': 0.9, 'seed': 42 },
>>> { 'lr': 1e-2, 'tau': 0.99, 'seed': 42 }
>>> ]
'''
return list(dict(zip(grid, x)) for x in itertools.product(*grid.values()))
if __name__ == '__main__':
parser = argparse.ArgumentParser(usage = 'run all experiments')
parser.add_argument('--interpreter', type = str, default = './env/bin/python3', help = 'python interpreter invoked for scripts')
parser.add_argument('--log', action = 'store_true', default = False, help = 'whether or not to log to weights & biases')
parser.add_argument('--centralized_base', action = 'store_true', default = False, help = 'run centralized emnist experiments for baseline')
parser.add_argument('--centralized_dg', action = 'store_true', default = False, help = 'run centralized emnist experiments in domain generalization setting')
parser.add_argument('--federated_base', action = 'store_true', default = False, help = 'run federated femnist experiments for baseline')
parser.add_argument('--federated_smart', action = 'store_true', default = False, help = 'run federated femnist experiments using smart client selection')
parser.add_argument('--federated_opt', action = 'store_true', default = False, help = 'run federated femnist experiments using state of the art algorithms')
parser.add_argument('--federated_dg', action = 'store_true', default = False, help = 'run federated femnist experiments in domain generalization setting')
parser.add_argument('--federated_lsq', action = 'store_true', default = False, help = 'run federated femnist experiments using federated least squares algorithm')
parser.add_argument('--federated_svrg', action = 'store_true', default = False, help = 'run federated femnist experiments using SVRG accelerator as optimizer')
parser.add_argument('--federated_transformed_baseline', action = 'store_true', default = False, help = 'run federated femnist experiments on transformed femnist (both SGD and SVRG)')
arguments = parser.parse_args()
# checkpoints directory for state dictionaries
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
# FIXME enable log to True
runner = ExperimentRunner(interpreter = arguments.interpreter)
# centralized baseline
runner.schedule(
script = 'experiments/centralized_baseline.py',
grid = {
'seed': [ 0, 42 ],
'epochs': [ 10 ],
'learning_rate': [ 5e-3, 1e-2 ],
'scheduler': [ ('step', 0.5, 1) ], # decays the learning rate every epoch
'batch_size': [ 256 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'log': [ arguments.log ]
},
enable = arguments.centralized_base
)
# centralized domain generalization baseline (rotated domains)
runner.schedule(
script = 'experiments/centralized_generalization.py',
grid = {
'seed': [ 0 ],
'validation_domain_angle': [ None, 0, 15, 30, 45, 60, 75 ],
'epochs': [ 10 ],
'learning_rate': [ 1e-2 ],
'scheduler': [ ('step', 0.5, 1) ], # decays the learning rate every epoch
'batch_size': [ 256 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'log': [ arguments.log ]
},
enable = arguments.centralized_dg
)
# federated baseline
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0, 42 ],
'dataset': [ 'femnist' ],
'niid': [ True, False ],
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 1, 5, 10 ],
'selected': [ 5, 10, 20 ], # with 20 clients crashes on my laptop
'learning_rate': [ 0.05 ],
'scheduler': [ ('step', 0.75, 50) ], # decays the learning rate every 50 central rounds
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedavg' ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'log': [ arguments.log ]
},
enable = arguments.federated_base
)
# smart client selection on federated baseline
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist' ],
'niid': [ True, False ],
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 5 ],
'selected': [ 10 ],
'learning_rate': [ 0.05 ],
'scheduler': [ ('step', 0.75, 50) ], # decays the learning rate every 50 central rounds
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedavg' ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'selection': [ ('hybrid', 0.5, 0.10), ('hybrid', 0.0001, 0.30) ],
'log': [ arguments.log ]
},
enable = arguments.federated_smart
)
# smart client selection with power of choice on federated baseline
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist' ],
'niid': [ True, False ],
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 5 ],
'selected': [ 2, 5, 8 ],
'learning_rate': [ 0.05 ],
'scheduler': [ ('step', 0.75, 50) ], # decays the learning rate every 50 central rounds
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedavg' ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'selection': [ ('poc', 10), ('poc', 25) ],
'log': [ arguments.log ]
},
enable = arguments.federated_smart
)
# domain generalization in federated setting
runner.schedule(
script = 'experiments/federated_generalization.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist' ],
'niid': [ True, False ], # or only niid ?
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 5 ],
'selected': [ 10 ],
'learning_rate': [ 0.05 ],
'scheduler': [ ('step', 0.75, 50) ], # decays the learning rate every 50 central rounds
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedavg', ('fedsr', 128, 1e-1, 1e-1) ],
'validation_domain_angle': [ None, 0, 15, 30, 45, 60, 75 ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'log': [ arguments.log ]
},
enable = arguments.federated_dg
)
# state of the art algorithms in federated setting
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist' ],
'niid': [ True ],
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 5 ],
'selected': [ 10 ],
'learning_rate': [ 0.05 ],
'scheduler': [ ('step', 0.75, 50) ], # decays the learning rate every 50 central rounds
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [
('fedprox', 1e-3),
('fedprox', 1e-2),
('fedprox', 1e-1),
('fedyogi', 0.9, 0.99, 1e-4, 1e-3),
('fedyogi', 0.9, 0.99, 1e-4, 1e-2),
('fedyogi', 0.9, 0.99, 1e-4, 1e-1)
],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'log': [ arguments.log ]
},
enable = arguments.federated_opt
)
# federated baseline
runner.schedule(
script = 'experiments/federated_least_squares.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist_vgg_pca', 'femnist_vgg', 'femnist_vgg_pca', 'femnist_rocket2d', 'femnist_rocket2d_pca' ],
'niid': [ False, True ],
'selected': [ None ],
'training_fraction': [ .80, .90, .95, 1.0 ],
'algorithm': [ 'fedlsq' ],
'log': [ arguments.log ]
},
enable = arguments.federated_lsq
)
# federated baseline with SVRG accelerator
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0, 42 ],
'dataset': [ 'femnist' ],
'niid': [ True, False ],
'model': [ 'cnn' ],
'rounds': [ 500 ],
'epochs': [ 1, 5, 10 ],
'selected': [ 5, 10, 20 ], # with 20 clients crashes on my laptop
'learning_rate': [ 0.1 ],
'batch_size': [ 64 ],
'weight_decay': [ 1e-5 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedsvrg' ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'log': [ arguments.log ]
},
enable = arguments.federated_svrg
)
# federated baseline with SVRG accelerator
runner.schedule(
script = 'experiments/federated_baseline.py',
grid = {
'seed': [ 0 ],
'dataset': [ 'femnist_rocket2d_pca', 'femnist_vgg_pca', 'femnist_rocket2d', 'femnist_vgg' ],
'niid': [ False, True ],
'rounds': [ 1000 ],
'epochs': [ 1, 5, 10 ],
'selected': [ 50, 100 ],
'learning_rate': [ 0.05, 0.1 ],
'scheduler': [ ('step', 0.75, 50) ], # scheduler ignore in fedsvrg
'batch_size': [ 64 ],
'weight_decay': [ 1 ],
'momentum': [ 0.9 ],
'algorithm': [ 'fedavg', 'fedsvrg' ],
'evaluation': [ 50 ],
'evaluators': [ 250 ],
'log': [ arguments.log ]
},
enable = arguments.federated_transformed_baseline
)
# run all experiments
runner.run()