-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation_utils.py
259 lines (190 loc) · 8.86 KB
/
evaluation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import torch
from torch.utils.data import random_split
from torchvision import datasets
from torchvision.utils import make_grid
from data.dataset import MaskedDataset
from models.models_classifiers import Classifier
def STL10_eval(input_path, output_path, batch_size, learning_rate, model, device, generator, finetuning=False, writer=None, verbose=True):
print('Starting {}...'.format('finetuning' if finetuning else 'readout'))
data_main = datasets.STL10(root=input_path, split='train')
data_main, data_test = random_split(data_main, [4000, 1000], generator=generator)
train_dataset = MaskedDataset(data_main)
test_dataset = MaskedDataset(data_test)
train_loader = torch.utils.data.DataLoader(
dataset = train_dataset,
batch_size = batch_size,
shuffle = True,
generator = generator,
num_workers = 32,
pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
dataset = test_dataset,
batch_size = batch_size,
shuffle = False,
generator = generator,
num_workers = 32,
pin_memory=True
)
if not finetuning:
model.eval();
else:
model.train();
classifier = Classifier(encoded_dim=128*12*12, num_classes=10)
classifier = classifier.to(device)
if verbose:
print(classifier)
loss_function = torch.nn.CrossEntropyLoss()
MSE_loss = torch.nn.MSELoss()
# Adam Optimizer
optimizer = torch.optim.Adam(
classifier.parameters() if not finetuning else list(model.parameters()) + list(classifier.parameters()),
lr = learning_rate,
weight_decay = 1e-8
)
lowest_test_loss = (9999, 0)
improvement_window = 0
for epoch in range(1000):
loss = 0
for batch_features, _, labels, _ in train_loader:
batch_features, labels = batch_features.to(device), labels.to(device)
# reset the gradients
optimizer.zero_grad()
# retrieve representations
if not finetuning:
with torch.no_grad():
_, representations = model(batch_features)
else:
_, representations = model(batch_features)
# compute class predictions
classifications = classifier(torch.flatten(representations, start_dim=1))
# compute classification loss
train_loss = loss_function(classifications, labels)
# compute gradients
train_loss.backward()
# perform weight updates based on current gradients
optimizer.step()
loss += train_loss.item()
# compute epoch training loss
loss = loss / len(train_loader)
if writer:
writer.add_scalar('{}/loss/train'.format('finetuning' if finetuning else 'readout'), loss, epoch)
if verbose:
print("Epoch : {}, train-loss = {:.8f}".format(epoch + 1, loss))
test_loss = 0
for batch_features, _, labels, _ in test_loader:
batch_features, labels = batch_features.to(device), labels.to(device)
# retrieve representations
with torch.no_grad():
_, representations = model(batch_features)
# compute class predictions
classifications = classifier(torch.flatten(representations, start_dim=1))
# compute classification loss
test_loss += loss_function(classifications, labels).item()
# compute epoch training loss
test_loss = test_loss / len(test_loader)
if writer:
writer.add_scalar('{}/loss/test'.format('finetuning' if finetuning else 'readout'), test_loss, epoch)
if verbose:
print("Epoch : {}, test-loss = {:.8f}".format(epoch + 1, test_loss))
if test_loss < lowest_test_loss[0]:
if abs(test_loss - lowest_test_loss[0]) < 1e-4:
if verbose:
print('Very small improvement')
improvement_window += 1
else:
improvement_window = 0
lowest_test_loss = (test_loss, epoch + 1)
if finetuning:
torch.save(model.state_dict(), output_path + '/finetuning_model.pt')
torch.save(classifier.state_dict(), output_path + '/{}_classifier.pt'.format('finetuning' if finetuning else 'readout'))
else:
if verbose:
print('No improvement in epoch {}'.format(epoch + 1))
improvement_window += 1
if improvement_window >= 10:
print('Ending classifier training')
print('Lowest validation-loss of {} at epoch {}'.format(lowest_test_loss[0], lowest_test_loss[1]))
break
if finetuning:
if os.path.exists(output_path + '/finetuning_model.pt'):
model.load_state_dict(torch.load(output_path + '/finetuning_model.pt', map_location=device))
model.eval();
else:
raise Exception('Model save-file not found')
if os.path.exists(output_path + '/{}_classifier.pt'.format('finetuning' if finetuning else 'readout')):
classifier.load_state_dict(torch.load(output_path + '/{}_classifier.pt'.format('finetuning' if finetuning else 'readout'), map_location=device))
else:
raise Exception('Classifier save-file not found')
classifier.eval();
# Training accuracy
data_main = datasets.STL10(root=input_path, split='train')
train_dataset = MaskedDataset(data_main)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=False,
generator=generator,
num_workers=32,
pin_memory=True
)
correct = 0
total = 0
trained_loss = 0
with torch.no_grad():
for batch_features, full_res, labels, _ in train_loader:
batch_features, full_res, labels = batch_features.to(device), full_res.to(device), labels.to(device)
reconstructions, representations = model(batch_features)
classifications = classifier(torch.flatten(representations, start_dim=1))
_, predicted = torch.max(classifications.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
trained_loss += MSE_loss(reconstructions, full_res).item()
print('{} out of {} images correct: {} %'.format(correct, total, round((100 * correct / total), 2)))
if writer:
writer.add_scalar('{}/accuracy/train'.format('finetuning' if finetuning else 'readout'), round((100 * correct / total), 2), 0)
trained_loss = trained_loss / len(train_loader)
print('Loss of reconstructions {}'.format(trained_loss))
if writer:
writer.add_scalar('{}/MSE/train'.format('finetuning' if finetuning else 'readout'), trained_loss, 0)
# Testing accuracy
data_test = datasets.STL10(root=input_path, split='test')
test_dataset = MaskedDataset(data_test)
test_loader = torch.utils.data.DataLoader(
dataset = test_dataset,
batch_size = batch_size,
shuffle = False,
generator = generator,
num_workers = 32,
pin_memory=True
)
correct = 0
total = 0
trained_loss = 0
with torch.no_grad():
for batch_features, full_res, labels, _ in test_loader:
batch_features, full_res, labels = batch_features.to(device), full_res.to(device), labels.to(device)
reconstructions, representations = model(batch_features)
classifications = classifier(torch.flatten(representations, start_dim=1))
_, predicted = torch.max(classifications.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
trained_loss += MSE_loss(reconstructions, full_res).item()
print('{} out of {} images correct: {} %'.format(correct, total, round((100 * correct / total), 2)))
if writer:
writer.add_scalar('{}/accuracy/test'.format('finetuning' if finetuning else 'readout'), round((100 * correct / total), 2), 0)
trained_loss = trained_loss / len(test_loader)
if verbose:
print('Loss of reconstructions {}'.format(trained_loss))
if writer:
writer.add_scalar('{}/MSE/test'.format('finetuning' if finetuning else 'readout'), trained_loss, 0)
# Reconstructions
grid_input = make_grid(batch_features[:32])
grid_target = make_grid(full_res[:32])
grid_reconstructions = make_grid(reconstructions[:32])
if writer:
writer.add_image('Images/{}/Inputs'.format('finetuning' if finetuning else 'readout'), grid_input)
writer.add_image('Images/{}/Targets'.format('finetuning' if finetuning else 'readout'), grid_target)
writer.add_image('Images/{}/Reconstructions'.format('finetuning' if finetuning else 'readout'), grid_reconstructions)
return