-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnew train.py
250 lines (220 loc) · 8.96 KB
/
new train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import tensorflow as tf
import numpy as np
from tensorflow import keras
import os
# from PIL import Image
import cv2
import matplotlib.pyplot as plt
import sys
from tqdm import tqdm
path = os.getcwd()
clean_path = os.path.join(path,r"Clean_hsv")
unclean_path = os.path.join(path,r"Unclean_hsv")
CLASS_NAMES = np.array(['Clean','Unclean'])
image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,validation_split=0.2,horizontal_flip=True,vertical_flip=True)
EPOCHS = 10
BATCH_SIZE = 32
IMG_HEIGHT = 224
IMG_WIDTH = 224
# train_data_gen = image_generator.flow_from_directory(directory=str(path), \
# batch_size=BATCH_SIZE, \
# shuffle=True, \
# target_size=(IMG_HEIGHT, IMG_WIDTH), \
# classes = list(CLASS_NAMES),\
# subset='training',\
# class_mode='binary')
train_data_gen = image_generator.flow_from_directory(directory=str(path), \
batch_size=BATCH_SIZE, \
shuffle=True, \
target_size=(IMG_HEIGHT, IMG_WIDTH), \
classes = list(CLASS_NAMES),\
subset='training',\
class_mode='categorical')
from collections import Counter
counter = Counter(train_data_gen.classes)
max_val = float(max(counter.values()))
class_weights = {class_id : max_val/num_images for class_id, num_images in counter.items()}
print(class_weights)
# sys.exit()
STEPS_PER_EPOCH = train_data_gen.samples//BATCH_SIZE
# os.mkdir(os.path.join(path,r"Train Dataset"))
# cnt = 0
# name = os.path.join(path,r"Train Dataset")
# pbar = tqdm(total=36604)
# for x,y in train_data_gen:
# # print(y[0])
# for img,label in zip(x,y):
# img=np.squeeze(img)
# img*=255
# img=np.array(img,dtype=np.uint8)
# print(label)
# # n = f"{cnt}.{label}.jpg"
# # nme=os.path.join(name,n)
# # cv2.imwrite(nme,cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
# # if not cv2.imwrite(nme,cv2.cvtColor(img, cv2.COLOR_RGB2BGR)):
# # print(label,img,nme)
# # raise Exception("Could not write image")
# # pbar.update()
# # cnt+=1
# plt.imshow(img)
# plt.show()
# break
# break
# # pbar.close()
# sys.exit()
# validation_generator = image_generator.flow_from_directory(
# directory=str(path), # same directory as training data
# target_size=(IMG_HEIGHT, IMG_WIDTH), \
# batch_size=BATCH_SIZE, \
# class_mode='binary', \
# classes = list(CLASS_NAMES),\
# subset='validation') # set as validation dat
validation_generator = image_generator.flow_from_directory(
directory=str(path), # same directory as training data
target_size=(IMG_HEIGHT, IMG_WIDTH), \
batch_size=BATCH_SIZE, \
class_mode='categorical', \
classes = list(CLASS_NAMES),\
subset='validation')
# os.mkdir(os.path.join(path,r"Val Dataset"))
# cnt = 0
# name = os.path.join(path,r"Val Dataset")
# pbar = tqdm(total=36604)
# for x,y in validation_generator:
# # print(y[0])
# for img,label in zip(x,y):
# # img=np.squeeze(img)
# img*=255
# img=np.array(img,dtype=np.uint8)
# # print(y[0])
# n = f"{cnt}.{label}.jpg"
# nme=os.path.join(name,n)
# cv2.imwrite(nme,cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
# if not cv2.imwrite(nme,cv2.cvtColor(img, cv2.COLOR_RGB2BGR)):
# print(label,img,nme)
# raise Exception("Could not write image")
# pbar.update()
# cnt+=1
# # plt.imshow(img)
# # plt.show()
# # break
# pbar.close()
# sys.exit()
# for x in validation_generator:
# print(x[0][1])
# plt.imshow(x[0][1])
# plt.show()
# break
# sys.exit()
from tensorflow.keras import layers
from tensorflow.keras import Model
from tensorflow.keras.applications.inception_v3 import InceptionV3
# pre_trained_model = InceptionV3(input_shape = (IMG_HEIGHT, IMG_WIDTH, 3), \
# include_top = False, \
# weights = 'imagenet')
# pre_trained_model.summary()
# for layer in pre_trained_model.layers:
# layer.trainable = False
# last_layer = pre_trained_model.get_layer('mixed10')
# last_output = last_layer.output
# x = pre_trained_model.output
# x = layers.Conv2D(filters=128,kernel_size=5,activation='relu')(x)
# x = layers.Conv2D(filters=64,kernel_size=5,activation='relu')(x)
# x = layers.MaxPooling2D(pool_size=(2,2))
# x = layers.Dropout(0.25)(x)
# x = layers.Conv2D(filters=64,kernel_size=3,activation='relu')(x)
# x = layers.Conv2D(filters=32,kernel_size=3,activation='relu')(x)
# x = layers.MaxPooling2D(pool_size=(2,2))
# x = layers.Dropout(0.25)(x)
# x = layers.Flatten()
# x = layers.Dense(1024, activation='relu')(x)
# x = layers.Dense(512, activation='relu')(x)
# x = layers.Dense(256, activation='relu')(x)
# x = layers.Dense(128, activation='relu')(x)
# x = layers.Dropout(0.25)(x)
# predictions = layers.Dense(1, activation='sigmoid')(x)
# predictions = layers.Dense(2, activation='softmax')(x)
from tensorflow.keras import layers,Model
############################### Model we need to play with ###############
model = tf.keras.models.Sequential()
model.add(layers.Input(shape=(IMG_HEIGHT,IMG_WIDTH,3)))
model.add(layers.Conv2D(filters=32,kernel_size=(3,3),activation='relu',))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.2))
model.add(layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.2))
model.add(layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu',))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.2))
model.add(layers.Conv2D(filters=128,kernel_size=(3,3),activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.2))
model.add(layers.Conv2D(filters=128,kernel_size=(3,3),activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.2))
model.add(layers.Flatten())
model.add(layers.Dropout(rate=0.2))
model.add(layers.Dense(128,activation='relu'))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(2,activation='softmax'))
# model = Model(inputs=pre_trained_model.input, outputs=predictions)
#############################################################################################
# from tensorflow.keras.optimizers import RMSprop
# model = keras.Sequential()
# # model.add(layers.Input())
# model.add(layers.Conv2D(32,(3,3),activation='relu'))
# model.add(layers.MaxPool2D())
# model.add(layers.Conv2D(32,(3,3),activation='relu'))
# model.add(layers.Conv2D(32,(3,3),activation='relu'))
# model.add(layers.MaxPool2D())
# model.add(layers.Conv2D(32,(3,3),activation='relu'))
# model.add(layers.Flatten())
# model.add(layers.Dense(units=512,activation='relu'))
# model.add(layers.Dense(units=256,activation='relu'))
# model.add(layers.Dense(units=128,activation='relu'))
# model.add(layers.Dense(units=64,activation='relu'))
# model.add(layers.Dense(units=32,activation='relu'))
# model.add(layers.Dropout(rate=0.2))
# model.add(layers.Dense(units=1,activation='sigmoid'))
model.compile(optimizer='adam', loss = 'categorical_crossentropy', \
metrics = ['accuracy'])
# model.compile(optimizer='adam', loss = 'categorical_crossentropy', \
# metrics = ['accuracy'])
# categorical_crossentropy
# model.compile(optimizer=RMSprop(lr=0.001), loss = 'categorical_crossentropy', \
# metrics = ['accuracy'])
history = model.fit(
train_data_gen,\
steps_per_epoch=train_data_gen.samples//BATCH_SIZE,\
epochs=EPOCHS,\
validation_data = validation_generator, \
validation_steps = validation_generator.samples // BATCH_SIZE,\
class_weight=class_weights)
# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
# acc = history.history['accuracy']
# acc = np.resize(acc,(100,1))
# plt.plot(EPOCHS,acc)
# plt.show()
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()