forked from spthermo/SDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
301 lines (270 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import torch.nn as nn
import torch.optim as optim
import sys
import os
import datetime
import argparse
import utils
import loaders
import models
import supervision
#hard-wire the gpu id
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
def parse_arguments(args):
usage_text = (
"SDNet Pytorch Implementation"
"Usage: python train.py [options],"
" with [options]:"
)
parser = argparse.ArgumentParser(description=usage_text)
#training details
parser.add_argument('-e','--epochs', type= int, default=10, help='Number of epochs')
parser.add_argument('-bs','--batch_size', type= int, default=1, help='Number of inputs per batch')
parser.add_argument('-n','--name', type=str, default='default_name', help='The name of this train/test. Used when storing information.')
parser.add_argument('-mn','--model_name', type=str, default='sdnet', help='Name of the model architecture to be used for training/testing.')
parser.add_argument('-lr','--learning_rate', type=float, default='0.0001', help='The learning rate for model training')
parser.add_argument('-wi','--weight_init', type=str, default="xavier", help='Weight initialization method, or path to weights file (for fine-tuning or continuing training)')
parser.add_argument('--save_path', type=str, default='checkpoints', help= 'Path to save model checkpoints')
parser.add_argument("--anatomy_factors", type=int, default=8, help = 'Number of anatomy factors to encode')
parser.add_argument("--modality_factors", type=int, default=8, help = 'Number of modality factors to encode')
parser.add_argument("--charbonnier", type=int, default=0, help = 'Choose Charbonnier penalty for the reconstruction loss')
parser.add_argument("--data_path", type=str, default='data', help='Path to ACDC dataset')
#regularizers weights
parser.add_argument("--kl_w", type=float, default=0.01, help = 'KL divergence loss weight')
parser.add_argument("--regress_w", type=float, default=1.0, help = 'Regression loss weight')
parser.add_argument("--focal_w", type=float, default=0.0, help = 'Focal loss weight')
parser.add_argument("--dice_w", type=float, default=10.0, help = 'Dice loss weight')
parser.add_argument("--reco_w", type=float, default=1.0, help = 'Reconstruction loss weight')
#hardware
parser.add_argument('-g','--gpu', type=str, default='-1', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
parser.add_argument('--num_workers' ,type= int, default = 0, help='Number of workers to use for dataload')
#visdom params
parser.add_argument('-d','--disp_iters', type=int, default=1, help='Log training progress (i.e. loss etc.) on console every <disp_iters> iterations.')
parser.add_argument('--visdom', type=str, nargs='?', default=None, const="127.0.0.1", help = "Visdom server IP (port defaults to 8097)")
parser.add_argument('--visdom_iters', type=int, default=10, help = "Iteration interval that results will be reported at the visdom server for visualization.")
parser.add_argument('--print_factors', type=int, default=0, help='Set to 1 to visualize the anatomy factors in Visdom')
return parser.parse_known_args(args)
if __name__ == "__main__":
args, uknown = parse_arguments(sys.argv)
#create and init device
print('{} | Torch Version: {}'.format(datetime.datetime.now(), torch.__version__))
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device = torch.device('cuda:{}' .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else 'cpu')
print('Training {0} for {1} epochs using a batch size of {2} on {3}'.format(args.name, args.epochs, args.batch_size, device))
torch.manual_seed(667)
if device.type == 'cuda':
torch.cuda.manual_seed(667)
#Visdom setup
visualizer = utils.visualization.NullVisualizer() if args.visdom is None\
else utils.visualization.VisdomVisualizer(args.name, args.visdom, count=1)
#Model selection and initialization
model_params = {
'width': 224,
'height': 224,
'ndf': 64,
'norm': "batchnorm",
'upsample': "nearest",
'num_classes': 3,
'anatomy_out_channels': args.anatomy_factors,
'z_length': args.modality_factors,
'num_mask_channels': 8,
}
model = models.get_model(args.model_name, model_params)
num_params = utils.count_parameters(model)
print('Model Parameters: ', num_params)
models.initialize_weights(model, args.weight_init)
model.to(device)
#load training set
if device.type == 'cuda':
loader = loaders.ACDCLoader(args.data_path)
data = loader.load_labelled_data(0, 'training')
print(data.images.shape, data.masks.shape)
print(data.volumes(), len(data.volumes()))
images = torch.from_numpy(data.images.astype(float))
masks = torch.from_numpy(data.masks.astype(float))
else: #for debugging on cpu purposes
images = torch.FloatTensor(10, 1, 224, 224).uniform_(-1, 1)
masks = torch.FloatTensor(10, 3, 224, 224).uniform_(0, 1)
masks[masks < 0.5] = 0
masks[masks >= 0.5] = 1
#load validation set
if device.type == 'cuda':
vdata = loader.load_labelled_data(0, 'validation')
print(vdata.images.shape, vdata.masks.shape)
print(vdata.volumes(), len(vdata.volumes()))
vimages = torch.from_numpy(vdata.images.astype(float))
vmasks = torch.from_numpy(vdata.masks.astype(float))
else: #for on debugging on cpu purposes
vimages = torch.FloatTensor(2, 1, 224, 224).uniform_(-1, 1)
vmasks = torch.FloatTensor(2, 3, 224, 224).uniform_(0, 1)
vmasks[vmasks < 0.5] = 0
vmasks[vmasks >= 0.5] = 1
#loss initialization
l1_distance = nn.L1Loss().to(device)
#optimizer initialization
optimizer = optim.Adam(model.parameters(), betas=(0.5,0.999), lr=args.learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
#loss initialization
total_loss = supervision.AverageMeter(device)
running_reco_loss = supervision.AverageMeter(device)
running_kl_loss = supervision.AverageMeter(device)
running_dice_loss = supervision.AverageMeter(device)
running_reg_loss = supervision.AverageMeter(device)
running_focal_loss = supervision.AverageMeter(device)
running_kl_a_loss = supervision.AverageMeter(device)
running_reg_a_loss = supervision.AverageMeter(device)
#validation loss initialization
val_running_dice_loss = supervision.AverageMeter(device)
#auxiliary tensors init
b_images = torch.zeros(args.batch_size, 1, 224, 224)
b_masks = torch.zeros(args.batch_size, masks.shape[1]+1, 224, 224)
collapsed_b_masks = torch.zeros(args.batch_size, 1, 224, 224) #used in focal loss computation
v_image = torch.zeros(1, 1, 224, 224)
v_mask = torch.zeros(1, masks.shape[1]+1, 224, 224)
total_batches = images.shape[0] // args.batch_size
global_iterations = 0
val_dice_list = []
val_dice_best = 0.0
#train/val process
for epoch in range(args.epochs):
idx = torch.randperm(images.shape[0])
in_batch_iter = 0
model.train()
for iteration in range(images.shape[0]):
if (iteration + args.batch_size) > images.shape[0]:
break
if in_batch_iter < args.batch_size:
b_images[in_batch_iter] = images[idx[iteration]]
#add an extra channel for mask background
cmask = masks[idx[iteration]]
logical_or = torch.sum(cmask, dim=0)
tmask_0 = 1 - logical_or
tmask = torch.cat([tmask_0.unsqueeze(0), cmask], dim=0)
b_masks[in_batch_iter] = tmask
in_batch_iter += 1
else:
#init batch-wise losses
kl_loss = 0.0
dice_loss = 0.0
regression_loss = 0.0
focal_loss = 0.0
kl_a_loss = 0.0
regression_a_loss = 0.0
optimizer.zero_grad()
#collapse mask tensor to 1 channel for the focal loss computation
collapsed_b_masks = b_masks[:,1,:,:] + b_masks[:,2,:,:]*2 + b_masks[:,3,:,:]*3
#forward pass
reco, z_out, mu_tilde, a_mu_tilde, a_out, seg_pred, mu, logvar, a_mu, a_logvar = model(b_images.to(device), b_masks.to(device), 'training')
#loss computation
if args.charbonnier > 0:
l1_loss = l1_distance(reco, b_images.to(device))
reco_loss = supervision.charbonnier_penalty(l1_loss)
else:
reco_loss = l1_distance(reco, b_images.to(device))
if args.kl_w > 0.0:
kl_loss = supervision.KL_divergence(logvar, mu)
if args.dice_w > 0.0:
dice_loss = supervision.dice_loss(seg_pred[:,1:,:,:], b_masks[:,1:,:,:].to(device))
if args.regress_w > 0.0:
regression_loss = l1_distance(mu_tilde, z_out)
if args.focal_w > 0.0:
collapsed_b_masks[collapsed_b_masks > 3] = 3
focal_loss = supervision.FocalLoss(gamma=2,alpha=0.25)(seg_pred, collapsed_b_masks.to(device))
if args.model_name == 'sdnet2' and args.kl_w > 0.0:
kl_a_loss = supervision.KL_divergence(a_logvar, a_mu)
if args.model_name == 'sdnet2' and args.regress_w > 0.0:
regression_a_loss = l1_distance(a_mu_tilde, a_out)
if args.model_name == 'sdnet3' and args.kl_w > 0.0:
kl_a_loss = supervision.KL_divergence(a_logvar, a_mu)
batch_loss = args.reco_w * reco_loss\
+ args.kl_w * kl_loss\
+ args.dice_w * dice_loss\
+ args.regress_w * regression_loss\
+ args.focal_w * focal_loss\
+ args.kl_w * kl_a_loss\
+ args.regress_w * regression_a_loss #2 last losses used only for the VAE anatomy encoding case
#backprop and optimizer update
batch_loss.backward()
optimizer.step()
#logging
total_loss.update(batch_loss)
running_reco_loss.update(reco_loss)
running_kl_loss.update(kl_loss)
running_dice_loss.update(dice_loss)
running_reg_loss.update(regression_loss)
running_focal_loss.update(focal_loss)
running_kl_a_loss.update(kl_a_loss)
running_reg_a_loss.update(regression_a_loss)
#visualizations
if (iteration + 1) % args.visdom_iters == 0 and args.visdom is not None:
visualizer.show_map(b_images.to(device), 'Input Image')
visualizer.show_map(reco, 'Reconstructed Image')
visualizer.show_seg_map(b_masks.to(device), 'GT Mask')
visualizer.show_seg_map(seg_pred, 'Predicted Mask')
if args.print_factors:
visualizer.show_anatomical_factors(a_out, 'Anatomical Factor')
if (iteration + 1) % args.disp_iters <= args.batch_size:
for param_group in optimizer.param_groups:
lr = param_group['lr']
print("Epoch: {}, iteration: {}/{}\nLR: {}\nFocal: {}\nDice: {}\nReco: {}\nKLD: {}\nReg: {}\nKLD_a: {}\nReg_a: {}\nTotal average loss: {}\n\n"\
.format(epoch, iteration, images.shape[0], lr, running_focal_loss.avg, running_dice_loss.avg, running_reco_loss.avg,\
running_kl_loss.avg, running_reg_loss.avg, running_kl_a_loss.avg, running_reg_a_loss.avg, total_loss.avg))
#loss plots
if args.visdom is not None:
visualizer.append_loss(epoch, global_iterations, total_loss.avg.item(), "Total")
visualizer.append_loss(epoch, global_iterations, running_reco_loss.avg.item(), "Reconstruction")
visualizer.append_loss(epoch, global_iterations, running_focal_loss.avg.item(), "Focal")
visualizer.append_loss(epoch, global_iterations, running_kl_loss.avg.item(), "KLD")
visualizer.append_loss(epoch, global_iterations, running_dice_loss.avg.item(), "Dice")
visualizer.append_loss(epoch, global_iterations, running_reg_loss.avg.item(), "Regression")
visualizer.append_loss(epoch, global_iterations, running_kl_a_loss.avg.item(), "KLD_a")
visualizer.append_loss(epoch, global_iterations, running_reg_a_loss.avg.item(), "Regression_a")
total_loss.reset(device)
running_reco_loss.reset(device)
running_kl_loss.reset(device)
running_dice_loss.reset(device)
running_reg_loss.reset(device)
running_focal_loss.reset(device)
running_kl_a_loss.reset(device)
running_reg_a_loss.reset(device)
global_iterations += args.batch_size
in_batch_iter = 0
#validation
with torch.no_grad():
model.eval()
for iteration in range(vimages.shape[0]):
v_image[0] = vimages[iteration]
#add an extra channel for mask background
cmask = vmasks[iteration]
logical_or = torch.sum(cmask, dim=0)
tmask_0 = 1 - logical_or
tmask = torch.cat([tmask_0.unsqueeze(0), cmask], dim=0)
v_mask[0] = tmask
#forward pass
_, _, _, _, _, seg_pred, _, _, _, _ = model(v_image.to(device), v_mask.to(device), 'val')
#dice score computation
dice_loss = supervision.dice_score(seg_pred[:,1:,:,:], v_mask[:,1:,:,:].to(device))
#logging
val_running_dice_loss.update(dice_loss)
print("Epoch: {},\nValidation Samples: {}\nDice: {}\n"\
.format(epoch, iteration, val_running_dice_loss.avg))
#val loss plots
if args.visdom is not None:
visualizer.append_loss(epoch, epoch, val_running_dice_loss.avg.item(), "Validation Dice")
#check for plateau
val_dice_curr = val_running_dice_loss.avg.item()
scheduler.step(val_dice_curr)
#save checkpoint for the best validation accuracy
if val_dice_curr > val_dice_best:
val_dice_best = val_dice_curr
print("Epoch checkpoint")
current_dir = os.getcwd()
final_dir = os.path.join(current_dir, args.save_path)
utils.save_network_state(model, model_params['width'], model_params['height'], model_params['ndf'], \
model_params['norm'], model_params['upsample'], model_params['num_classes'], \
model_params['anatomy_out_channels'], model_params['z_length'],\
model_params['num_mask_channels'], optimizer, \
epoch, args.name + "_model_state_epoch_" + str(epoch), \
final_dir)
val_running_dice_loss.reset(device)