-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
124 lines (103 loc) · 2.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from src.schedule import get_linear_schedule_with_warmup
from src.misc import countParams, updateLog, Visualizer
from src.trainutils import TrainOneEpoch, TestOneEpoch
from src.dataset import ImageDataset, loadInfo
from torch.utils.data import DataLoader
from src.tokenizer import loadTokenizer
from src.transforms import Transforms
from src.nn import TRnet, TRconfig
from src.tracker import Tracker
from config import Traincfg
import pandas as pd
import torch
train_cfg = Traincfg()
print(train_cfg)
dataset_info = loadInfo(train_cfg.root)
tokenizer = loadTokenizer(dataset_info.vocab_path)
dataset = ImageDataset(
train_cfg.root,
transforms = Transforms(train_cfg.image_size),
split = 'train'
).train_test_split(test_size = 0.15)
train_ldr = DataLoader(
dataset['train'],
train_cfg.batch_size,
shuffle = True
)
test_ldr = DataLoader(
dataset['test'],
train_cfg.batch_size,
shuffle = True
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net_cfg = TRconfig(
image_size = train_cfg.image_size,
patch_size = train_cfg.patch_size,
num_channels = train_cfg.num_channels,
n_vocab = len(tokenizer.vocab),
max_positions = dataset_info.max_positions,
pad_idx = dataset_info.pad_idx,
sos_idx = dataset_info.sos_idx,
eos_idx = dataset_info.eos_idx
)
print(net_cfg)
model = TRnet(net_cfg).to(device)
print(model)
print(f"Trainable Parameters : {countParams(model):,}")
optimizer = torch.optim.AdamW(
model.parameters(),
lr = train_cfg.lr,
weight_decay = train_cfg.weight_decay
)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
train_cfg.n_epochs * 0.05,
train_cfg.n_epochs
)
log = {
"epoch" : [],
"train_loss" : [],
"test_loss" : [],
"lr" : [],
}
visualizer = Visualizer(
patterns = ['loss', 'lr']
)
tracker = Tracker(
model,
monitor = train_cfg.monitor_value,
delta = train_cfg.monitor_delta,
mode = train_cfg.monitor_mode
)
template = {
'metadata' : dataset_info.__dict__
}
for epoch in range(1, train_cfg.n_epochs + 1):
train_log = TrainOneEpoch(
model = model,
optimizer = optimizer,
tokenizer = tokenizer,
ldr = train_ldr,
epoch = epoch,
device = device
)
updateLog(train_log, log)
test_log = TestOneEpoch(
model = model,
tokenizer = tokenizer,
ldr = test_ldr,
epoch = epoch,
device = device
)
updateLog(test_log, log)
tracker.step(test_log, epoch)
log['lr'].append(lr_scheduler.get_last_lr()[0])
log['epoch'].append(epoch)
visualizer(log)
lr_scheduler.step()
tracker.at_epoch_end()
tracker.restore_best_weights(
template = template,
fname = train_cfg.save_as
)
pd.DataFrame(log).to_csv('trainLog.csv', index = False)