|
| 1 | +/* |
| 2 | +* Copyright (C) 2020-2025 MEmilio |
| 3 | +* |
| 4 | +* Authors: Henrik Zunker |
| 5 | +* |
| 6 | +* Contact: Martin J. Kuehn <[email protected]> |
| 7 | +* |
| 8 | +* Licensed under the Apache License, Version 2.0 (the "License"); |
| 9 | +* you may not use this file except in compliance with the License. |
| 10 | +* You may obtain a copy of the License at |
| 11 | +* |
| 12 | +* http://www.apache.org/licenses/LICENSE-2.0 |
| 13 | +* |
| 14 | +* Unless required by applicable law or agreed to in writing, software |
| 15 | +* distributed under the License is distributed on an "AS IS" BASIS, |
| 16 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 17 | +* See the License for the specific language governing permissions and |
| 18 | +* limitations under the License. |
| 19 | +*/ |
| 20 | +#include "ode_secir/model.h" |
| 21 | +#include "memilio/compartments/feedback_simulation.h" |
| 22 | +#include "memilio/utils/logging.h" |
| 23 | + |
| 24 | +void initialize_model(mio::osecir::Model<double>& model, int total_population, double cont_freq) |
| 25 | +{ |
| 26 | + model.parameters.set<mio::osecir::StartDay>(60); |
| 27 | + model.parameters.set<mio::osecir::Seasonality<double>>(0.2); |
| 28 | + |
| 29 | + // time-related parameters |
| 30 | + model.parameters.get<mio::osecir::TimeExposed<double>>() = 3.2; |
| 31 | + model.parameters.get<mio::osecir::TimeInfectedNoSymptoms<double>>() = 2.0; |
| 32 | + model.parameters.get<mio::osecir::TimeInfectedSymptoms<double>>() = 5.8; |
| 33 | + model.parameters.get<mio::osecir::TimeInfectedSevere<double>>() = 9.5; |
| 34 | + model.parameters.get<mio::osecir::TimeInfectedCritical<double>>() = 7.1; |
| 35 | + |
| 36 | + // Set transmission and isolation parameters |
| 37 | + model.parameters.get<mio::osecir::TransmissionProbabilityOnContact<double>>() = 0.05; |
| 38 | + model.parameters.get<mio::osecir::RelativeTransmissionNoSymptoms<double>>() = 0.7; |
| 39 | + model.parameters.get<mio::osecir::RecoveredPerInfectedNoSymptoms<double>>() = 0.09; |
| 40 | + model.parameters.get<mio::osecir::RiskOfInfectionFromSymptomatic<double>>() = 0.25; |
| 41 | + model.parameters.get<mio::osecir::MaxRiskOfInfectionFromSymptomatic<double>>() = 0.45; |
| 42 | + model.parameters.get<mio::osecir::TestAndTraceCapacity<double>>() = 35; |
| 43 | + model.parameters.get<mio::osecir::SeverePerInfectedSymptoms<double>>() = 0.2; |
| 44 | + model.parameters.get<mio::osecir::CriticalPerSevere<double>>() = 0.25; |
| 45 | + model.parameters.get<mio::osecir::DeathsPerCritical<double>>() = 0.3; |
| 46 | + |
| 47 | + // contact matrix |
| 48 | + mio::ContactMatrixGroup& contact_matrix = model.parameters.get<mio::osecir::ContactPatterns<double>>(); |
| 49 | + contact_matrix[0] = mio::ContactMatrix(Eigen::MatrixXd::Constant(1, 1, cont_freq)); |
| 50 | + |
| 51 | + // initial population |
| 52 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::Exposed}] = 40; |
| 53 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedNoSymptoms}] = 30; |
| 54 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedNoSymptomsConfirmed}] = 0; |
| 55 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedSymptoms}] = 20; |
| 56 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedSymptomsConfirmed}] = 0; |
| 57 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedSevere}] = 10; |
| 58 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::InfectedCritical}] = 5; |
| 59 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::Recovered}] = 20; |
| 60 | + model.populations[{mio::AgeGroup(0), mio::osecir::InfectionState::Dead}] = 0; |
| 61 | + model.populations.set_difference_from_total({mio::AgeGroup(0), mio::osecir::InfectionState::Susceptible}, |
| 62 | + total_population); |
| 63 | + |
| 64 | + model.apply_constraints(); |
| 65 | +} |
| 66 | + |
| 67 | +void initialize_feedback(mio::FeedbackSimulation<double, mio::Simulation<double, mio::osecir::Model<double>>, |
| 68 | + mio::osecir::ContactPatterns<double>>& feedback_simulation) |
| 69 | +{ |
| 70 | + // nominal ICU capacity |
| 71 | + feedback_simulation.get_parameters().template get<mio::NominalICUCapacity<double>>() = 10; |
| 72 | + |
| 73 | + // ICU occupancy in the past for memory kernel |
| 74 | + auto& icu_occupancy = feedback_simulation.get_parameters().template get<mio::ICUOccupancyHistory<double>>(); |
| 75 | + Eigen::VectorXd icu_day = Eigen::VectorXd::Constant(1, 1); |
| 76 | + const auto cutoff = static_cast<int>(feedback_simulation.get_parameters().template get<mio::GammaCutOff>()); |
| 77 | + for (int t = -cutoff; t <= 0; ++t) { |
| 78 | + icu_occupancy.add_time_point(t, icu_day); |
| 79 | + } |
| 80 | + |
| 81 | + // bounds for contact reduction measures |
| 82 | + feedback_simulation.get_parameters().template get<mio::ContactReductionMin<double>>() = {0.1}; |
| 83 | + feedback_simulation.get_parameters().template get<mio::ContactReductionMax<double>>() = {0.8}; |
| 84 | +} |
| 85 | + |
| 86 | +int main() |
| 87 | +{ |
| 88 | + // This example demonstrates the implementation of a feedback mechanism for a ODE SECIR model. |
| 89 | + // It shows how the perceived risk dynamically impacts contact reduction measures. |
| 90 | + // The feedback mechanism adjusts contact rates during simulation based on the perceived |
| 91 | + // risk which is calculated from the ICU occupancy using a memory kernel. |
| 92 | + mio::set_log_level(mio::LogLevel::warn); |
| 93 | + |
| 94 | + const double tmax = 35; |
| 95 | + const int total_population = 1000; |
| 96 | + const double cont_freq = 10; |
| 97 | + |
| 98 | + // create and initialize ODE model for a single age group |
| 99 | + mio::osecir::Model model(1); |
| 100 | + initialize_model(model, total_population, cont_freq); |
| 101 | + |
| 102 | + // determine the index for the ICU state (InfectedCritical) for feedback mechanism |
| 103 | + auto icu_index = std::vector<size_t>{ |
| 104 | + model.populations.get_flat_index({mio::AgeGroup(0), mio::osecir::InfectionState::InfectedCritical})}; |
| 105 | + |
| 106 | + // create simulation objects: first a secir simulation, then a feedback simulation |
| 107 | + auto simulation = mio::osecir::Simulation<double, mio::Simulation<double, mio::osecir::Model<double>>>(model); |
| 108 | + auto feedback_simulation = |
| 109 | + mio::FeedbackSimulation<double, mio::Simulation<double, mio::osecir::Model<double>>, |
| 110 | + mio::osecir::ContactPatterns<double>>(std::move(simulation), icu_index); |
| 111 | + |
| 112 | + // set up the parameters for the feedback simulation |
| 113 | + initialize_feedback(feedback_simulation); |
| 114 | + |
| 115 | + // run the simulation with feedback mechanism |
| 116 | + feedback_simulation.advance(tmax); |
| 117 | + |
| 118 | + // print the perceived risk and the final total population |
| 119 | + auto& perceived_risk = feedback_simulation.get_perceived_risk(); |
| 120 | + perceived_risk.print_table({"Perceived Risk"}); |
| 121 | + return 0; |
| 122 | +} |
0 commit comments