![Global Docs](https://camo.githubusercontent.com/00cba1c88bf465c22060ca31527182960ac39be6a6658fcd3c283da1879ada83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f63732d5363694d4c2d626c75652e737667)
![Build Status](https://github.com/SciML/SurrogatesBase.jl/workflows/CI/badge.svg)
![SciML Code Style](https://camo.githubusercontent.com/a8c7d9f4f962fbe270f449d6c5ae2cde0d0089805a4fff7651250950ccff03c3/68747470733a2f2f696d672e736869656c64732e696f2f7374617469632f76313f6c6162656c3d636f64652532307374796c65266d6573736167653d5363694d4c26636f6c6f723d393535386232266c6162656c436f6c6f723d333839383236)
API for deterministic and stochastic surrogates.
Given data $((x_1, y_1), \ldots, (x_N, y_N))$ obtained by evaluating a function $y_i =
f(x_i)$ or sampling from a conditional probability density $p_{Y|X}(Y = y_i|X = x_i)$,
a deterministic surrogate is a function $s(x)$ (e.g. a radial basis function
interpolator) that
uses the data to approximate $f$ or some statistic of $p_{Y|X}$ (e.g. the mean),
whereas a stochastic surrogate is a stochastic process (e.g. a Gaussian process
approximation) that uses
the data to approximate $f$ or $p_{Y|X}$ and quantify the uncertainty of the
approximation.