-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathtrainer.py
426 lines (352 loc) · 19.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
Licensed under the NVIDIA Source Code License. See LICENSE at https://github.com/nv-tlabs/GameGAN_code.
Authors: Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, Sanja Fidler
"""
"""
Contains some code from:
https://github.com/LMescheder/GAN_stability
with the following license:
MIT License
Copyright (c) 2018 Lars Mescheder
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import utils
import torch
import torch.nn.functional as F
import torch.utils.data
import math
class Trainer(object):
def __init__(self, opts,
netG, netD,
optG_temporal, optG_graphic, optD,
gan_type, reg_type, reg_param, zdist):
self.opts = opts
self.netG = netG
self.netG.opts = opts
self.netD = netD
if self.netD is not None:
self.netD.opts = opts
self.optG_temporal = optG_temporal
self.optG_graphic = optG_graphic
self.optD = optD
self.gan_type = gan_type
self.reg_type = reg_type
self.reg_param = reg_param
self.zdist = zdist
# Default to hinge loss
if utils.check_arg(opts, 'standard_gan_loss'):
self.generator_loss = self.standard_gan_loss
self.discriminator_loss = self.standard_gan_loss
else:
self.generator_loss = self.loss_hinge_gen
self.discriminator_loss = self.loss_hinge_dis
# Hinge loss for discriminator
def loss_hinge_dis(self, logits, label):
if label == 1:
return torch.mean(F.relu(1. - logits))
else:
return torch.mean(F.relu(1. + logits))
# Hinge loss for generator
def loss_hinge_gen(self, dis_fake):
loss = -torch.mean(dis_fake)
return loss
# BCE GAN loss
def standard_gan_loss(self, d_out, target=1):
if d_out is None:
return utils.check_gpu(self.opts.gpu, torch.FloatTensor([0]))
targets = d_out.new_full(size=d_out.size(), fill_value=target)
loss = F.binary_cross_entropy_with_logits(d_out, targets)
return loss
# Reconstruction loss
def get_recon_loss(self, input, target, detach=True, criterion=None):
if detach:
target = target.detach()
loss = criterion(input, target, reduction='sum') / target.size(0)
return loss
def generator_trainstep(self, states, actions, warm_up=10, train=True, epoch=0):
'''
Single run of episode training / inference
'''
if self.opts.warmup_decay_epoch > 0:
warm_up = max(self.opts.min_warmup, math.ceil(warm_up * (1 - epoch * 1.0 / self.opts.warmup_decay_epoch)))
utils.toggle_grad(self.netG, True)
utils.toggle_grad(self.netD, True)
if train:
self.netG.train()
self.netD.train()
else:
self.netG.eval()
self.netD.eval()
self.optD.zero_grad()
self.optG_temporal.zero_grad()
self.optG_graphic.zero_grad()
loss_dict, grads = {}, {}
gen_actions = actions
graphic_loss, temporal_loss, total_loss, dout_fake, rev_images = 0, 0, 0, None, None
# generate outputs
gout = self.netG(self.zdist, states, gen_actions, warm_up, train=train, epoch=epoch)
# adversarial losses
if self.opts.gan_loss:
# run discriminators
gen_adv_input = torch.cat(gout['outputs'], dim=0)
dout_fake = self.netD(gen_adv_input, gen_actions[:len(gout['outputs']) + 1], states, warm_up, epoch=epoch)
# action-conditioned discriminator loss
gloss_fake_action = self.generator_loss(dout_fake['action_predictions'])
loss_dict['gloss_fake_action'] = gloss_fake_action
# single frame discrimiinator loss
gloss_single_frame_loss = self.generator_loss(dout_fake['single_frame_predictions_all'])
if dout_fake['single_frame_predictions_patch'] is not None:
gloss_single_frame_patch_loss = self.generator_loss(dout_fake['single_frame_predictions_patch'])
gloss_single_frame_loss += gloss_single_frame_patch_loss
loss_dict['gloss_single_frame_patch_loss'] = gloss_single_frame_patch_loss
loss_dict['gloss_single_frame_loss'] = gloss_single_frame_loss
# temporal discriminator loss
gloss_content_loss = 0
if self.opts.do_temporal:
for i in range(len(dout_fake['content_predictions'])):
curloss = self.generator_loss(dout_fake['content_predictions'][i])
loss_dict['gloss_content_loss' + str(i)] = curloss
gloss_content_loss += curloss
gloss_content_loss = gloss_content_loss / len(dout_fake['content_predictions'])
# action and z reconstruction losses
action_orig = torch.cat(gen_actions[:len(gout['outputs'])], dim=0)
_, action_orig = torch.max(action_orig, 1)
action_orig = action_orig.long()
z_orig = torch.cat(gout['zs'], dim=0)
action_recon_loss = F.cross_entropy(dout_fake['action_recon'], action_orig)
z_recon_loss = F.mse_loss(dout_fake['z_recon'], z_orig)
loss_dict['g_z_recon_loss'] = z_recon_loss
loss_dict['g_action_recon_loss'] = action_recon_loss
# some all adversarial losses
total_loss += self.opts.gen_content_loss_multiplier * gloss_content_loss + \
self.opts.gen_single_frame_loss_multiplier * gloss_single_frame_loss + \
self.opts.gen_action_loss_multiplier * gloss_fake_action + \
self.opts.gen_info_loss_multiplier * z_recon_loss + \
action_recon_loss
# discriminator feature matching losses
if self.opts.feature_l2:
feat_loss_fn = F.mse_loss
else:
feat_loss_fn = F.l1_loss
din = states[1:len(gout['outputs']) + 1]
dout_real = self.netD(torch.cat(din, dim=0), actions[:len(gout['outputs']) + 1], states, warm_up, epoch=epoch)
if self.opts.disc_features:
x_fake_ = dout_fake['disc_features']
x_real_ = dout_real['disc_features'].detach()
loss_l1_disc_features = feat_loss_fn(x_fake_, x_real_)
loss_dict['loss_l1_disc_features'] = loss_l1_disc_features
total_loss += self.opts.feature_loss_multiplier * (loss_l1_disc_features)
if self.opts.disc_temporal_features:
x_fake_ = dout_fake['disc_temporal_features']
x_real_ = dout_real['disc_temporal_features'].detach()
loss_l1_disc_temporal_features = feat_loss_fn(x_fake_, x_real_)
loss_dict['loss_l1_disc_temporal_features'] = loss_l1_disc_temporal_features
total_loss += self.opts.feature_loss_multiplier * (loss_l1_disc_temporal_features)
# frame reconstruction loss
targ = torch.cat(states[1:len(gout['outputs']) + 1], dim=0)
x_fake_ = torch.cat(gout['outputs'], dim=0)
x_real_ = targ
if self.opts.final_l1:
criterion = F.l1_loss
elif self.opts.final_l2:
criterion = F.mse_loss
loss_recon = self.get_recon_loss(x_fake_, x_real_, criterion=criterion)
total_loss += self.opts.recon_loss_multiplier * loss_recon
loss_dict['loss_recon'] = loss_recon
# cycle_loss
if self.opts.do_memory and (self.opts.cycle_loss and epoch >= self.opts.cycle_start_epoch):
if self.opts.rev_multiply_map:
ref = [comp[0] for comp in gout['base_imgs_all']]
else:
ref = [comp[2] for comp in gout['base_imgs_all']]
rev_outputs = torch.cat(gout['rev_outputs'][::-1], dim=0)
num_rev = len(gout['rev_outputs'])
gout['rev_inputs'] = ref[:num_rev]
rev_reference = torch.cat(gout['rev_inputs'], dim=0)
if self.opts.rev_final_l1:
criterion = F.l1_loss
elif self.opts.rev_final_l2:
criterion = F.mse_loss
loss_rev_recon = self.get_recon_loss(rev_outputs, rev_reference, detach=False,
criterion=criterion)
cycle_loss = self.opts.rev_recon_loss_multiplier * loss_rev_recon
loss_dict['loss_rev_recon'] = loss_rev_recon
# memory regularization
if self.opts.do_memory and self.opts.alpha_loss_multiplier > 0:
total_loss += self.opts.alpha_loss_multiplier * gout['alpha_loss']
loss_dict['loss_alpha'] = gout['alpha_loss']
# optimization
if train:
if self.opts.gan_loss:
gen_adv_input.register_hook(utils.save_grad('gen_adv_input', grads))
x_fake_.register_hook(utils.save_grad('gen_recon_input', grads))
if self.opts.do_memory and self.opts.cycle_loss and epoch >= self.opts.cycle_start_epoch:
'''
# gradient from cycle loss only applied to dynamics engine and memory
(total_loss+cycle_loss).backward(retain_graph=True)
self.optG_temporal.step()
self.optG_temporal.zero_grad()
self.optG_graphic.zero_grad()
total_loss.backward()
self.optG_graphic.step()
'''
# With Torch 1.5+ there is a fix to the checks in the autograd and above code yields an error:
## RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation:
## [torch.cuda.FloatTensor [512, 1536]], which is output 0 of TBackward, "is at version 2; expected version 1 instead".
## Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
# What this does mean is that once we step the optG_temporal, it updates parameters in-place and the total_loss.backward()
# cannot be computed anymore. Previously, the error did not get raised due to a bug.
# The fix that we are going to perform here is to calculate gradients of the (total_loss+cycle_loss),
# save them aside filtered by the parameters (leafs) optimized by the optG_temporal optimizer,
# zero gradients and calculate gradients for total_loss's backward step, then set the previously saved aside back
# and step both optimizers after all of this.
# Is there a better way to do it without rewriting a lot of the code here?
# gradient from cycle loss only applied to dynamics engine and memory
(total_loss+cycle_loss).backward(retain_graph=True)
# Save gradients aside
saved_grad_groups = []
for param_group in self.optG_temporal.param_groups:
saved_grad_groups.append([])
for params in param_group['params']:
saved_grad_groups[-1].append(params.grad.clone())
# Zero gradients
self.optG_temporal.zero_grad()
self.optG_graphic.zero_grad()
# Calculate gradients from total_loss alone
total_loss.backward()
# Set the gradients of combined loss back
for param_group, saved_grads in zip(self.optG_temporal.param_groups, saved_grad_groups):
for params, saved_grad in zip(param_group['params'], saved_grads):
params.grad.detach()
del params.grad
params.grad = saved_grad
torch.cuda.empty_cache()
# Optimize
self.optG_temporal.step()
self.optG_graphic.step()
else:
total_loss.backward()
self.optG_temporal.step()
if not self.opts.fix_graphic:
self.optG_graphic.step()
return loss_dict, total_loss, gout, grads, None
def discriminator_trainstep(self, states, actions, neg_actions, warm_up=10, gout=None, dout_fake=None,
epoch=0, step=0):
'''
Single step of discriminator training
'''
if self.opts.warmup_decay_epoch > 0:
warm_up = max(self.opts.min_warmup, math.ceil(warm_up * (1 - epoch * 1.0 / self.opts.warmup_decay_epoch)))
utils.toggle_grad(self.netG, False)
utils.toggle_grad(self.netD, True)
self.netG.train()
self.netD.train()
self.optG_temporal.zero_grad()
self.optG_graphic.zero_grad()
self.optD.zero_grad()
loss_dict = {}
states = [x.requires_grad_() for x in states]
actions = [x.requires_grad_() for x in actions]
neg_actions = [x.requires_grad_() for x in neg_actions]
# Run discriminators on real data
d_input = torch.cat(states[1:], dim=0)
d_input = d_input.requires_grad_()
dout = self.netD(d_input, actions, states, warm_up, neg_actions=neg_actions,
rev_steps=-1, epoch=epoch, step=step)
# action-conditioned disc loss for real and negative actions
dloss_real_action = self.discriminator_loss(dout['action_predictions'], 1)
dloss_real_action_wrong = self.discriminator_loss(dout['neg_action_predictions'], 0)
loss_dict['dloss_real_action'] = dloss_real_action
loss_dict['dloss_real_action_wrong'] = dloss_real_action_wrong
# action reconstruction loss from real data
action_orig = torch.cat(actions[:-1], dim=0)
_, action_orig = torch.max(action_orig, 1)
action_orig = action_orig.long()
action_recon_loss = F.cross_entropy(dout['action_recon'], action_orig)
loss_dict['d_action_recon_loss'] = action_recon_loss
# single frame disc loss
dloss_real_single_frame_loss = self.discriminator_loss(dout['single_frame_predictions_all'], 1)
if dout['single_frame_predictions_patch'] is not None:
dloss_real_single_frame_patch_loss = self.discriminator_loss(dout['single_frame_predictions_patch'], 1)
dloss_real_single_frame_loss += dloss_real_single_frame_patch_loss
loss_dict['dloss_real_single_frame_patch_loss'] = dloss_real_single_frame_patch_loss
loss_dict['dloss_real_single_frame_loss'] = dloss_real_single_frame_loss
# temporal disc loss
dloss_real_content_loss = 0
if self.opts.do_temporal:
for i in range(len(dout['content_predictions'])):
curloss = self.discriminator_loss(dout['content_predictions'][i], 1)
loss_dict['dloss_real_content_loss' + str(i)] = curloss
dloss_real_content_loss += curloss
dloss_real_content_loss = dloss_real_content_loss / len(dout['content_predictions'])
loss_dict['dloss_real_content_loss'] = dloss_real_content_loss
loss = self.opts.disc_loss_multiplier * (self.opts.disc_content_loss_multiplier * dloss_real_content_loss + \
dloss_real_single_frame_loss) + \
dloss_real_action + dloss_real_action_wrong + \
action_recon_loss
# gradient penalty on real data
reg = 0
if (self.reg_type == 'real' or self.reg_type == 'real_fake') and self.reg_param > 0:
reg += 0.33*utils.compute_grad2(dout['action_predictions'], d_input, ns=self.opts.num_steps).mean()
reg += 0.33*utils.compute_grad2(dout['single_frame_predictions_all'], d_input, ns=self.opts.num_steps).mean()
reg += 0.33*utils.compute_grad2(dout['action_recon'], d_input, ns=self.opts.num_steps).mean()
reg_temporal = 0
if self.opts.do_temporal:
for i in range(len(dout['content_predictions'])):
curloss = utils.compute_grad2(dout['content_predictions'][i], d_input, ns=self.opts.num_steps).mean()
reg_temporal += curloss
reg_temporal = reg_temporal / len(dout['content_predictions'])
loss_dict['dloss_REG_temporal'] = reg_temporal
loss_dict['dloss_REG'] = reg
loss += self.reg_param * reg + self.opts.LAMBDA_temporal * reg_temporal
# Run discriminators on generated data
if dout_fake is None:
gen_actions = actions
dout_fake = self.netD(torch.cat(gout['outputs'], dim=0).detach(), gen_actions[:len(gout['outputs']) + 1],
states, warm_up, rev_steps=-1, epoch=epoch)
# action-conditioned disc loss on generated data
dloss_fake_action = self.discriminator_loss(dout_fake['action_predictions'], 0)
loss_dict['dloss_fake_action'] = dloss_fake_action
# single frame disc loss on generated data
dloss_fake_single_frame_loss = self.discriminator_loss(dout_fake['single_frame_predictions_all'], 0)
if dout_fake['single_frame_predictions_patch'] is not None:
dloss_fake_single_frame_patch_loss = self.discriminator_loss(dout_fake['single_frame_predictions_patch'], 0)
dloss_fake_single_frame_loss += dloss_fake_single_frame_patch_loss
loss_dict['dloss_fake_single_frame_patch_loss'] = dloss_fake_single_frame_patch_loss
loss_dict['dloss_fake_single_frame_loss'] = dloss_fake_single_frame_loss
# temporal disc loss on generated data
dloss_fake_content_loss = 0
if self.opts.do_temporal:
for i in range(len(dout_fake['content_predictions'])):
curloss = self.discriminator_loss(dout_fake['content_predictions'][i], 0)
loss_dict['dloss_fake_content_loss' + str(i)] = curloss
dloss_fake_content_loss += curloss
dloss_fake_content_loss = dloss_fake_content_loss / len(dout_fake['content_predictions'])
loss_dict['dloss_fake_content_loss'] = dloss_fake_content_loss
# action and z reconstruction losses
z_orig = torch.cat(gout['zs'], dim=0)
z_recon_loss = F.mse_loss(dout_fake['z_recon'], z_orig) # , size_average=True) / z_orig.size(0)
loss_dict['dloss_fake_z_recon_loss'] = z_recon_loss
loss += self.opts.disc_loss_multiplier * (self.opts.disc_content_loss_multiplier * dloss_fake_content_loss + \
dloss_fake_single_frame_loss) + \
dloss_fake_action + \
z_recon_loss
loss.backward()
self.optD.step()
utils.toggle_grad(self.netD, False)
return loss_dict