forked from ABILab-CUHK/VisionFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_visionfm_for_multiclass_classification.py
265 lines (220 loc) · 12 KB
/
inference_visionfm_for_multiclass_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# loading the finetuned weights to evulate the performance
import os
import argparse
import json
import copy
import torch
import torch.backends.cudnn as cudnn
import utils
import models
import numpy as np
from models.head import ClsHead
from pathlib import Path
from torch import nn
from torchvision import transforms as pth_transforms
from torch.utils.data import Dataset
from PIL import Image
from sklearn.metrics import roc_auc_score, average_precision_score
from collections import defaultdict
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
class RETFoundDataset(Dataset):
def __init__(self, root, split, transform=None):
self.data = []
if 'PAPILA' in root:
dr_folder_list = ['anormal', 'bsuspectglaucoma', 'cglaucoma']
elif 'Glaucoma_fundus' in root:
dr_folder_list = ['anormal_control', 'bearly_glaucoma', 'cadvanced_glaucoma']
elif 'Retina' in root:
dr_folder_list = ['anormal', 'bcataract', 'cglaucoma', 'ddretina_disease']
elif 'OCTID' in root:
dr_folder_list = ['ANormal', 'ARMD', 'CSR', 'Diabetic_retinopathy', 'Macular_Hole']
elif 'JSIEC' in root:
dr_folder_list = ['0.0.Normal', '20.Massive hard exudates',
'0.1.Tessellated fundus', '21.Yellow-white spots-flecks',
'0.2.Large optic cup', '22.Cotton-wool spots',
'0.3.DR1', '23.Vessel tortuosity',
'1.0.DR2', '24.Chorioretinal atrophy-coloboma',
'1.1.DR3', '25.Preretinal hemorrhage',
'10.0.Possible glaucoma', '26.Fibrosis',
'10.1.Optic atrophy', '27.Laser Spots',
'11.Severe hypertensive retinopathy', '28.Silicon oil in eye',
'12.Disc swelling and elevation', '29.0.Blur fundus without PDR',
'13.Dragged Disc', '29.1.Blur fundus with suspected PDR',
'14.Congenital disc abnormality', '3.RAO',
'15.0.Retinitis pigmentosa', '4.Rhegmatogenous RD',
'15.1.Bietti crystalline dystrophy', '5.0.CSCR',
'16.Peripheral retinal degeneration and break', '5.1.VKH disease',
'17.Myelinated nerve fiber', '6.Maculopathy',
'18.Vitreous particles', '7.ERM',
'19.Fundus neoplasm', '8.MH',
'2.0.BRVO', '9.Pathological myopia',
'2.1.CRVO']
elif 'IDRiD' in root:
dr_folder_list = ['anoDR', 'bmildDR', 'cmoderateDR', 'dsevereDR', 'eproDR']
else:
dr_folder_list = ['anodr', 'bmilddr', 'cmoderatedr', 'dseveredr', 'eproliferativedr']
for lbl, lbl_name in enumerate(dr_folder_list):
img_files = os.listdir(os.path.join(root, split, lbl_name))
for img_f in img_files:
img_fpath = os.path.join(root, split, lbl_name, img_f)
self.data.append({'img_fpath': img_fpath, 'label': lbl})
self.transform = transform
def __getitem__(self, index):
entry = self.data[index]
img = pil_loader(entry['img_fpath'])
if self.transform is not None:
img = self.transform(img)
return img, entry['label']
def __len__(self):
return len(self.data)
def convert_to_one_hot(gts):
gts_one_hot = np.zeros((gts.shape[0], len(np.unique(gts))))
for i in range(len(gts)):
gts_one_hot[i][gts[i][0]] = 1
return gts_one_hot
def eval_linear(args):
utils.init_distributed_mode(args)
cudnn.benchmark = True
# fix the seed for reproducibility
utils.fix_random_seeds(args.seed)
# ============ preparing data ... ============
pth_transforms.ToTensor(),
mean, std = utils.get_stats(args.modality)
print(f"use the {args.modality} mean and std: {mean} and {std}")
train_transform = pth_transforms.Compose([
pth_transforms.RandomResizedCrop(args.input_size),
pth_transforms.RandomHorizontalFlip(),
pth_transforms.RandomVerticalFlip(),
pth_transforms.ToTensor(),
pth_transforms.Normalize(mean, std),
])
val_transform = pth_transforms.Compose([
pth_transforms.Resize(size=(args.input_size, args.input_size), interpolation=3),
pth_transforms.ToTensor(),
pth_transforms.Normalize(mean, std),
])
print(f"-------- Current Task: {args.task} Modality: {args.modality} -------")
dataset_val = RETFoundDataset(root=args.data_path, split='test', transform=val_transform)
# sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
val_loader = torch.utils.data.DataLoader(
dataset_val,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
shuffle=True
)
print(f"Data loaded with {len(dataset_val)} test imgs.")
# ============ building network ... ============
model = models.__dict__[args.arch](
img_size=[args.input_size],
patch_size=args.patch_size,
num_classes=0,
use_mean_pooling=args.avgpool_patchtokens == 1)
embed_dim = model.embed_dim
model.cuda()
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
# load visionfm pretrained weights
utils.load_pretrained_weights(model, args.pretrained_weights, 'visionfm_state_dict', args.arch, args.patch_size)
linear_classifier = ClsHead(embed_dim=embed_dim * 4, num_classes=args.num_labels, layers=3)
linear_classifier = linear_classifier.cuda()
linear_classifier = nn.parallel.DistributedDataParallel(linear_classifier, device_ids=[args.gpu])
# load the weights
state_dict = torch.load(args.pretrained_weights, map_location="cpu")
state_dict = state_dict['classifier_state_dict']
msg = linear_classifier.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
model.eval()
linear_classifier.eval()
test_stats, output, target = validate_network(val_loader, model, linear_classifier, args.n_last_blocks,
args.avgpool_patchtokens)
output = np.vstack(output)
target = np.vstack(target)
auroc = roc_auc_score(target, output, average='macro', multi_class='ovr')
test_stats['auc'] = auroc
target_one_hot = convert_to_one_hot(target)
aupr = average_precision_score(target_one_hot, output, average='macro')
test_stats['aupr'] = aupr
print(f"AUC: {auroc}, AUPR: {aupr}")
np.save(os.path.join(args.output_dir, 'best.npy'), output)
np.save(os.path.join(args.output_dir, 'target.npy'), target)
@torch.no_grad()
def validate_network(val_loader, model, linear_classifier, n, avgpool):
model.eval()
linear_classifier.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
targets, preds = [], []
for inp, target in metric_logger.log_every(val_loader, 20, header):
# move to gpu
inp = inp.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# forward
with torch.no_grad():
intermediate_output = model.get_intermediate_layers(inp, n)
if avgpool == 0:
output = [x[:, 0] for x in intermediate_output]
elif avgpool == 1:
output = [torch.mean(intermediate_output[-1][:, 1:], dim=1)]
elif avgpool == 2:
output = [x[:, 0] for x in intermediate_output] + [torch.mean(intermediate_output[-1][:, 1:], dim=1)]
else:
assert False, "Unkown avgpool type {}".format(avgpool)
output = torch.cat(output, dim=-1)
output = linear_classifier(output)
num_class = output.shape[1]
if num_class > 1: # multi-class case
loss = nn.CrossEntropyLoss()(output, target)
else:
loss = nn.BCEWithLogitsLoss()(output.squeeze(dim=1), target.float())
# save results
if num_class > 1: # multi-classes
preds.append(output.softmax(dim=1).detach().cpu().numpy())
targets.append(np.expand_dims(target.detach().cpu().numpy(), axis=1))
else: # binary classification
preds.append(output.detach().cpu().sigmoid().numpy())
targets.append(np.expand_dims(target.detach().cpu().numpy(), axis=1))
metric_logger.update(loss=loss.item())
print('* test loss {losses.global_avg:.4f} '.format(losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, preds, targets
if __name__ == '__main__':
parser = argparse.ArgumentParser('Evaluating VisionFM for multi-class classification using a test set')
parser.add_argument('--n_last_blocks', default=4, type=int)
parser.add_argument('--avgpool_patchtokens', default=0, choices=[0, 1, 2], type=int,
help="""Whether or not to use global average pooled features or the [CLS] token.""")
parser.add_argument('--arch', default='vit_base', type=str, choices=['vit_tiny', 'vit_small', 'vit_base',
'vit_large', 'swin_tiny','swin_small', 'swin_base', 'swin_large', 'resnet50', 'resnet101', 'dalle_encoder'], help='Architecture.')
parser.add_argument('--input_size', type=int, default=224, help='Input size')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument('--window_size', default=7, type=int, help='Window size of the model.')
parser.add_argument('--pretrained_weights', default='', type=str, help="""Path to pretrained
weights""")
parser.add_argument("--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--epochs', default=100, type=int, help='Number of epochs of finetuning.')
parser.add_argument("--lr", default=0.001, type=float, help="""Learning rate at the beginning of
training the classifier""")
parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
parser.add_argument('--data_path', default='/path/to/dataset/', type=str,
help='Please specify path to the eye image data.')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--modality', default='Fundus', type=str)
parser.add_argument('--task', default='PAPILA', type=str)
parser.add_argument('--extra', default='', type=str)
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument('--val_freq', default=1, type=int, help="Epoch frequency for validation.")
parser.add_argument('--output_dir', default=".", help='Path to save logs and checkpoints')
parser.add_argument('--num_labels', default=1000, type=int, help='Number of labels for linear classifier')
parser.add_argument('--load_from', default=None, help='Path to load checkpoints to resume finetuning')
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
for checkpoint_key in args.checkpoint_key.split(','):
print("Start finetuning {}.".format(checkpoint_key))
args_copy = copy.deepcopy(args)
args_copy.checkpoint_key = checkpoint_key
eval_linear(args_copy)