forked from Shaun1280/MGL-test
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data2.py
218 lines (183 loc) · 9.85 KB
/
load_data2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
from torch.utils.data.dataset import Dataset
from collections import defaultdict
import numpy as np
import pandas as pd
from random import choice
import os
import re
from sklearn.preprocessing import LabelEncoder
class Data(object):
def __init__(self, opt):
# load data
self.interact_train, self.interact_test = None, None
self.user_num, self.item_num = None, None
self.user_feature, self.item_feature = None, None
self.__data_load(opt.dataset_name, bottom=opt.implcit_bottom)
self.user_list = list(range(self.user_num))
self.item_list = list(range(self.item_num))
# preprocess features
self.user_feature_list = None
self.item_feature_list = None
self.user_feature_matrix = None
self.__preprocess_features()
# generate train and test set (maps)
self.trainset_user = defaultdict(dict)
self.trainset_item = defaultdict(dict)
self.valset_user = defaultdict(dict)
self.valset_item = defaultdict(dict)
self.testset_user = defaultdict(dict)
self.testset_item = defaultdict(dict)
self.__generate_set()
# compute means, degrees, probs, and global mean
self.user_means = {} # mean values of users's ratings
self.item_means = {} # mean values of items's ratings
self.user_degrees = {} # users' degrees
self.item_degrees = {} # items' degrees
self.user_probs = {} # probability of being selected by the user
self.item_probs = {} # probability of being selected
self.global_mean = 0
self.__compute_statistics()
# create datasets
self.train_dataset = TrainDataset(self.interact_train, self.item_num, self.trainset_user)
self.val_dataset = TestDataset(self.valset_user, self.item_num)
self.test_dataset = TestDataset(self.testset_user, self.item_num)
# create mask for user's historical interactions
user_historical_mask = np.ones((self.user_num, self.item_num))
# Iterate over users and items
for user, items in self.trainset_user.items():
if items:
# Convert keys to list and update mask
item_list = list(items.keys())
user_historical_mask[user, item_list] = 0
# Convert numpy array to PyTorch tensor
self.user_historical_mask = torch.from_numpy(user_historical_mask)
# load processed data
def __data_load(self, dataset_name, bottom=None):
save_dir = os.path.join(os.path.dirname(__file__), "dataset/" + dataset_name)
if not os.path.exists(save_dir):
print("dataset is not exist!!!!")
return None
if os.path.exists(save_dir + '/encoded_user_feature.pkl'):
self.user_feature = pd.read_pickle(save_dir + '/encoded_user_feature.pkl')
print("encoded user_feature loaded", self.user_feature.shape)
else:
print("user_feature is not exist!!!!")
if os.path.exists(save_dir + '/encoded_item_feature.pkl'):
self.item_feature = pd.read_pickle(save_dir + '/encoded_item_feature.pkl')
print("encoded item_feature loaded", self.item_feature.shape)
else:
print("item_feature is not exist!!!!")
self.interact_train = pd.read_pickle(os.path.join(save_dir, 'interact_train.pkl'))
self.interact_val = pd.read_pickle(os.path.join(save_dir, 'interact_val.pkl'))
self.interact_test = pd.read_pickle(os.path.join(save_dir, 'interact_test.pkl'))
self.item_encoder_map = pd.read_csv(os.path.join(save_dir, 'item_encoder_map.csv'))
self.user_encoder_map = pd.read_csv(os.path.join(save_dir, 'user_encoder_map.csv'))
self.item_num, self.user_num = len(self.item_encoder_map), len(self.user_encoder_map)
# filter the data by bottom (e.g. implicit feedback = 0)
if bottom is not None:
self.interact_train = self.interact_train[self.interact_train['score'] > bottom]
self.interact_val = self.interact_val[self.interact_val['score'] > bottom]
self.interact_test = self.interact_test[self.interact_test['score'] > bottom]
# generate train and test set (maps)
def __generate_set(self):
def process_interactions(interactions, user_set, item_set):
for row in interactions.itertuples(index=False):
user_set[row.userid][row.itemid] = row.score
item_set[row.itemid][row.userid] = row.score
process_interactions(self.interact_train, self.trainset_user, self.trainset_item)
process_interactions(self.interact_val, self.valset_user, self.valset_item)
process_interactions(self.interact_test, self.testset_user, self.testset_item)
def __compute_statistics(self):
def compute_mean(keys, trainset, means, degrees, probs):
EPSILON = 0.00000001
for key in keys:
values = trainset[key].values()
means[key] = sum(values) / (len(values) + EPSILON)
degrees[key] = len(trainset[key])
probs[key] = len(values) / len(self.interact_train)
compute_mean(self.user_list, self.trainset_user, self.user_means, self.user_degrees, self.user_probs)
compute_mean(self.item_list, self.trainset_item, self.item_means, self.item_degrees, self.item_probs)
self.global_mean = sum(self.user_means.values()) / len(self.user_means) if self.user_means else 0
def __preprocess_features(self, remove_cols=['user', 'item', 'encoded']):
# process user feature
user_feature_name_list = [col for col in self.user_feature.columns if col not in remove_cols]
print(user_feature_name_list)
# user_feature is a dataframe with columns: user, feature1, feature2, ...,
self.user_feature_list = []
for f in user_feature_name_list:
encoder = LabelEncoder()
self.user_feature[f] = encoder.fit_transform(self.user_feature[f])
feature_dim = len(encoder.classes_)
# feature_dim is the number of unique values in the feature
self.user_feature_list.append({'feature_name':f, 'feature_dim':feature_dim})
self.user_feature_list.append({'feature_name':'encoded', 'feature_dim':self.user_num})
# (one hot encoding)
self.user_feature_matrix = torch.tensor(self.user_feature[[f['feature_name'] for f in self.user_feature_list]].values)
# process item feature
item_feature_name_list = [col for col in self.item_feature.columns if col not in remove_cols]
print(item_feature_name_list)
self.item_feature_list = []
self.dense_f_list_transforms = {}
for f in item_feature_name_list:
if f == 'title':
dense_f_list = self.item_feature[f].apply(lambda x: [i for i in re.split(' |\,|\)|\(', x) if i]).values.tolist()
vocab = []
for i in dense_f_list:
if i: # Check if the feature is not empty
vocab += i
else:
print('empty feature')
vocab = list(set(vocab)) # remove duplicates
vocab_dict = {word: idx for idx, word in enumerate(vocab)} # Create a dictionary for faster lookup
dense_f_transform = []
for t in dense_f_list:
dense_f_idx = torch.zeros(1, len(vocab)).long()
if t: # Check if the feature is not empty
for w in t:
idx = vocab_dict.get(w) # Get the index from the dictionary
if idx is not None: # Check if the word is in the vocabulary
dense_f_idx[0, idx] = 1
dense_f_transform.append(dense_f_idx)
self.dense_f_list_transforms[f] = torch.cat(dense_f_transform, dim=0)
else:
encoder = LabelEncoder()
self.item_feature[f] = encoder.fit_transform(self.item_feature[f])
feature_dim = len(encoder.classes_)
# feature_dim is the number of unique values in the feature
self.item_feature_list.append({'feature_name':f, 'feature_dim':feature_dim})
# (one hot encoding)
self.item_feature_list.append({'feature_name':'encoded', 'feature_dim':self.item_num})
self.item_feature_matrix = torch.from_numpy(self.item_feature[[f['feature_name'] for f in self.item_feature_list]].values)
class TrainDataset(Dataset):
def __init__(self, interact_train, item_num, trainset_user):
super().__init__()
self.interact_train = interact_train
self.item_list = list(range(item_num))
self.trainset_user = trainset_user
def __len__(self):
return len(self.interact_train)
def __getitem__(self, idx):
entry = self.interact_train.iloc[idx]
user = entry.userid
# positive item: the user has interacted with
pos_item = entry.itemid
# negative item: the user has not interacted with
neg_items = [item for item in self.item_list if item not in self.trainset_user[user]]
neg_item = choice(neg_items)
return user, pos_item, neg_item
class TestDataset(Dataset):
def __init__(self, testset_user, item_num):
super().__init__()
self.testset_user = testset_user
self.user_list = list(testset_user.keys())
self.item_num = item_num
def __len__(self):
return len(self.user_list)
def __getitem__(self, idx):
user = self.user_list[idx]
# get the items the user has interacted with
item_list = torch.tensor(list(self.testset_user[user].keys()))
# create a tensor with 1s at the indices of the items the user has interacted with
tensor = torch.zeros(self.item_num).scatter(0, item_list, 1)
return user, tensor