Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Batch inference problem! #87

Open
hopeux opened this issue Sep 14, 2023 · 1 comment
Open

Batch inference problem! #87

hopeux opened this issue Sep 14, 2023 · 1 comment

Comments

@hopeux
Copy link

hopeux commented Sep 14, 2023

I retrained the model with 16 batches. Then I converted to ONNX.

ONNX Sample

ort_session = ort.InferenceSession("yunet_16.onnx", providers=['CUDAExecutionProvider'])
input_name = ort_session.get_inputs()[0].name

for i_path in tqdm(os.listdir(images_path)):
    for i in os.listdir(os.path.join(images_path, i_path)):
        if i.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
            img = cv.imread(os.path.join(images_path, i_path, i))
            image = cv.resize(img, (128, 128), interpolation=cv.INTER_LINEAR)
            image = np.transpose(image, [2, 0, 1])

            org_images.append(img)
            img_list.append(image)
            if len(img_list) >= 16:
                input_data = np.array(img_list, dtype=np.float32)
                loc, conf, iou = ort_session.run(None, {input_name: input_data})

Main problem ı can not split the loc, conf, iou values for each image.

 example output shape for 1 batch(16)
 loc (15040, 14)
 conf (15040, 2)
 iou (15040, 2)

expected shape for 1 batch(16)
 loc (16, 15040, 14)
 conf (16, 15040, 2)
 iou (16, 15040, 2)

Is someting wrong here? Or model only use 1 batch. I don't get it.

@Wwupup
Copy link
Collaborator

Wwupup commented Oct 26, 2023

Hello, @hopeux the current project does not support batch inference.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants