-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_train_useek.py
executable file
·152 lines (126 loc) · 6.04 KB
/
3_train_useek.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import numpy as np
import h5py
import argparse
import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import random
from dgl.geometry import farthest_point_sampler
import copy
from merger.sprin.model import SPRINSeg
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--segment_dataset', type=str, default='./data/saved_segments/airplane_expand.npz')
arg_parser.add_argument('--checkpoint', type=str, default='./data/saved_models/airplane_useek.pt',
help='Model checkpoint file path for saving.')
arg_parser.add_argument('--device', type=str, default='cuda',
help='Pytorch device for training.')
arg_parser.add_argument('--batch', type=int, default=8,
help='Batch size.')
arg_parser.add_argument('--lr', type=float, default=1e-4)
arg_parser.add_argument('--epochs', type=int, default=30,
help='Number of epochs to train.')
arg_parser.add_argument('-k', '--n-keypoints', type=int, default=5,
help='Requested number of keypoints to detect.')
arg_parser.add_argument('--corr_factor', type=float, default=0)
arg_parser.add_argument('--do_negative_sampling', action='store_true', default=True)
arg_parser.add_argument('--do_fps', action='store_true', default=False)
arg_parser.add_argument('--negative_sampling_factor', type=int, default=3)
args = arg_parser.parse_args()
def pcd_normalization(b_pcd: torch.Tensor, centralize=True):
"""
Normalize the point cloud to [-1, 1]
:return: b_pcd: torch.Tensor of shape (b, n_points, 3)
"""
if not centralize:
data = copy.deepcopy(b_pcd) # [B, N, 3]
dmin = data.min(dim=1, keepdim=True)[0].min(dim=-1, keepdim=True)[0]
dmax = data.max(dim=1, keepdim=True)[0].max(dim=-1, keepdim=True)[0]
data = (data - dmin) / (dmax - dmin)
return 2.0 * (data - 0.5)
else:
data = copy.deepcopy(b_pcd) # [B, N, 3]
data -= data.mean(-2, keepdim=True)
data /= torch.max(torch.norm(data, dim=-1, keepdim=True), dim=-2, keepdim=True)[0]
return data
class SegmentMask(Dataset):
def __init__(self, pcds, masks):
self.pcds = pcds
self.masks = masks
def __len__(self):
return self.pcds.shape[0]
def __getitem__(self, idx):
return self.pcds[idx], self.masks[idx]
def loss(predicts, labels, pcds): # [B, N, K]
corr_matrix = torch.einsum('bij,bjk->bik', predicts, predicts.permute(0, 2, 1)) # [B, K, K]
trace = torch.einsum('bii->b', corr_matrix) # b
corr = (torch.sum(corr_matrix) - torch.sum(trace)) * 0.5 / predicts.numel()
if not args.do_negative_sampling:
bce = F.binary_cross_entropy(predicts, labels)
else:
bce = 0
for predict, label, pcd in zip(predicts, labels, pcds): # [N, K]
predict = predict.permute(1, 0) # [K, N]
label = label.permute(1, 0) # [K, N]
for ii, label_ in enumerate(label): # [N,]
positive_mask = torch.where(label_ == 1)[0]
negative_mask = torch.where(label_ == 0)[0]
if args.do_fps:
negative_pcd = pcd[negative_mask] # [m, 3]
sampled_index = farthest_point_sampler(negative_pcd.unsqueeze(0), min(len(negative_mask), len(positive_mask) * args.negative_sampling_factor)).squeeze()
else:
sampled_index = torch.LongTensor(random.sample(range(len(negative_mask)), min(len(negative_mask), len(positive_mask) * args.negative_sampling_factor))).to(args.device)
mask = torch.concat((positive_mask, negative_mask[sampled_index]))
bce += F.binary_cross_entropy(predict[ii, mask], label_[mask])
bce /= predicts.shape[0] * predicts.shape[2]
return bce, corr
def train_loop(dataloader, model, loss_fn, optimizer, epoch):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
X = pcd_normalization(X)
pred, _ = model(X.float().to(args.device))
bce, corr = loss_fn(torch.sigmoid(pred), y.float().to(args.device), X)
loss = bce + corr * args.corr_factor
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 10 == 0:
loss, current = loss.item(), batch * len(X)
print(f"BCE: {bce:>7f} Corr: {corr:>7f} [{current:>5d}/{size:>5d}]")
def eval_loop(dataloader, model, loss_fn, epoch):
num_batches = len(dataloader)
test_bce = 0
test_corr = 0
with torch.no_grad():
for X, y in dataloader:
X = pcd_normalization(X)
pred, _ = model(X.float().to(args.device))
bce, corr = loss_fn(torch.sigmoid(pred), y.float().to(args.device), X)
test_bce += bce
test_corr += corr
test_bce /= num_batches
test_corr /= num_batches
print(f"Test Error: \n Avg bce: {test_bce:>8f} Avg corr: {test_corr:>8f}\n")
return test_bce
if __name__ == '__main__':
segment_dataset = np.load(args.segment_dataset)
train_dataset = SegmentMask(segment_dataset['train_pcds'], segment_dataset['train_segments'])
test_dataset = SegmentMask(segment_dataset['test_pcds'], segment_dataset['test_segments'])
train_dataloader = DataLoader(train_dataset, batch_size=args.batch, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch, shuffle=True)
model = SPRINSeg(args.n_keypoints).to(args.device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
eval_loss = 1e8
for t in range(args.epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train_loop(train_dataloader, model, loss, optimizer, t)
new_eval_loss = eval_loop(test_dataloader, model, loss, t)
if new_eval_loss < eval_loss:
eval_loss = new_eval_loss
torch.save({
'epoch': t,
'model_state_dict': model.state_dict(),
}, args.checkpoint)