forked from pro12365/No_to_Assault
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHumandetection.py
86 lines (71 loc) · 3.5 KB
/
Humandetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import tensorflow as tf
import cv2
import time
class DetectorApi:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
oldgaph = tf.Graph()
with tf.io.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
tf.import_graph_def(oldgaph, name='')
self.default_graph = self.detection_graph.as_default()
self.sess = tf.Session(graph=self.detection_graph)
# Definite input and output Tensors for detection_graph
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
def processFrame(self, image):
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
start_time = time.time()
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
end_time = time.time()
print("Elapsed Time:", end_time - start_time)
im_height, im_width, _ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (int(boxes[0, i, 0] * im_height),
int(boxes[0, i, 1] * im_width),
int(boxes[0, i, 2] * im_height),
int(boxes[0, i, 3] * im_width))
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
def close(self):
self.sess.close()
self.default_graph.close()
if __name__ == "__main__":
model_path = '/home/frozen_inference_graph.pb'
odapi = DetectorApi(path_to_ckpt=model_path)
threshold = 0.7
cap = cv2.VideoCapture('video/Stupid Robbery Fails Compilation 2019.mp4')
while True:
r, img = cap.read()
try:
img = cv2.resize(img, (1280, 720), interpolation=cv2.INTER_AREA)
print(img.shape)
except:
break
height, width, layers = img.shape
size = (width, height)
print(size)
boxes, scores, classes, num = odapi.processFrame(img)
# Visualization of the results of a detection.
for i in range(len(boxes)):
# Class 1 represents human
if classes[i] == 1 and scores[i] > threshold:
box = boxes[i]
cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)
cv2.imshow(img)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break