Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Documentation need improve #4

Open
asdf8601 opened this issue Feb 29, 2016 · 2 comments
Open

Documentation need improve #4

asdf8601 opened this issue Feb 29, 2016 · 2 comments

Comments

@asdf8601
Copy link

Hi everybody,

I try to use the pycast library reading the documentation but I don't get nothing clear for me.

How can I make a simple exponential smoothing?

alfa = 0.1
es = pycast.methods.ExponentialSmoothing(smoothingFactor=alfa, valuesToForecast=4)
esm = es.execute(data.YT1.values)

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-14-a2d0589e322f> in <module>()
      1 alfa = 0.1
      2 es = pycast.methods.ExponentialSmoothing(smoothingFactor=alfa, valuesToForecast=4)
----> 3 esm = es.execute(data.YT1.values)

/Users/mmngreco/anaconda/envs/py2/lib/python2.7/site-packages/pycast/methods/exponentialsmoothing.pyc in execute(self, timeSeries)
    104             ## get the initial estimate
    105             if None == estimator:
--> 106                 estimator = t[1]
    107                 continue
    108 

IndexError: invalid index to scalar variable.
@T-002
Copy link
Owner

T-002 commented Feb 29, 2016

Hi Maximilano,

assuming data.YT1.values is a list, you should do the following:

tsdata = pycast.common.TimeSeries.from_twodim_list(data.YT1.values, tsformat=None)
esm = es.execute(tsdata)

Using the TimeSeries instance makes sure that all normalization and sorting requirements are meet.

Best Regards,

Christian

@asdf8601
Copy link
Author

asdf8601 commented Mar 2, 2016

Hi Christian,

Thanks for you answer. I see, maybe, a mistake in tsformat=None rather format=None??
It's correct the assumption but doesn't work yet.

The data:

print(data.head())

                   YT1         YT2        YT3           YT4
obs                                                        
1977-01-01  299.888916  155.612167  20.621498  295961.18750
1977-04-01  309.952911  160.179184  24.661081  301999.03125
1977-07-01  320.075104  164.102615  21.050383  308159.75000
1977-10-01  329.241852  170.582764  22.007036  314433.12500
1978-01-01  337.308044  174.714935  21.286356  320814.09375


print(data.tail())

                    YT1        YT2        YT3           YT4
obs                                                        
2008-10-01  1542.907593  790.39679  27.648138  22784.337891
2009-01-01          NaN        NaN        NaN           NaN
2009-04-01          NaN        NaN        NaN           NaN
2009-07-01          NaN        NaN        NaN           NaN
2009-10-01          NaN        NaN        NaN           NaN
  • data is a pandas dataframe, I work with the first serie YT1.
  • obs is label of index is a Timestamp type.

I try:

alfa = 0.1
tsdata = pycast.common.TimeSeries.from_twodim_list(data.YT1.values, format=None, )
esm = es.execute(tsdata)


---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-29-9da3b1eee9a1> in <module>()
      1 alfa = 0.1
----> 2 tsdata = pycast.common.TimeSeries.from_twodim_list(data.YT1.dropna().values, format=None, )
      3 esm = es.execute(tsdata)

/Users/mmngreco/anaconda/envs/py2/lib/python2.7/site-packages/pycast/common/timeseries.pyc in from_twodim_list(cls, datalist, format)
    184 
    185         for entry in datalist:
--> 186             ts.add_entry(*entry[:2])
    187 
    188         ## set the normalization level

IndexError: invalid index to scalar variable.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants