-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathinference.py
138 lines (116 loc) · 5.88 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import argparse
import logging
import math
from omegaconf import OmegaConf
from datetime import datetime
from pathlib import Path
import numpy as np
import torch.jit
from torchvision.datasets.folder import pil_loader
from torchvision.transforms.functional import pil_to_tensor, resize, center_crop
from torchvision.transforms.functional import to_pil_image
from mimicmotion.utils.geglu_patch import patch_geglu_inplace
patch_geglu_inplace()
from constants import ASPECT_RATIO
from mimicmotion.pipelines.pipeline_mimicmotion import MimicMotionPipeline
from mimicmotion.utils.loader import create_pipeline
from mimicmotion.utils.utils import save_to_mp4
from mimicmotion.dwpose.preprocess import get_video_pose, get_image_pose
logging.basicConfig(level=logging.INFO, format="%(asctime)s: [%(levelname)s] %(message)s")
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def preprocess(video_path, image_path, resolution=576, sample_stride=2):
"""preprocess ref image pose and video pose
Args:
video_path (str): input video pose path
image_path (str): reference image path
resolution (int, optional): Defaults to 576.
sample_stride (int, optional): Defaults to 2.
"""
image_pixels = pil_loader(image_path)
image_pixels = pil_to_tensor(image_pixels) # (c, h, w)
h, w = image_pixels.shape[-2:]
############################ compute target h/w according to original aspect ratio ###############################
if h>w:
w_target, h_target = resolution, int(resolution / ASPECT_RATIO // 64) * 64
else:
w_target, h_target = int(resolution / ASPECT_RATIO // 64) * 64, resolution
h_w_ratio = float(h) / float(w)
if h_w_ratio < h_target / w_target:
h_resize, w_resize = h_target, math.ceil(h_target / h_w_ratio)
else:
h_resize, w_resize = math.ceil(w_target * h_w_ratio), w_target
image_pixels = resize(image_pixels, [h_resize, w_resize], antialias=None)
image_pixels = center_crop(image_pixels, [h_target, w_target])
image_pixels = image_pixels.permute((1, 2, 0)).numpy()
##################################### get image&video pose value #################################################
image_pose = get_image_pose(image_pixels)
video_pose = get_video_pose(video_path, image_pixels, sample_stride=sample_stride)
pose_pixels = np.concatenate([np.expand_dims(image_pose, 0), video_pose])
image_pixels = np.transpose(np.expand_dims(image_pixels, 0), (0, 3, 1, 2))
return torch.from_numpy(pose_pixels.copy()) / 127.5 - 1, torch.from_numpy(image_pixels) / 127.5 - 1
def run_pipeline(pipeline: MimicMotionPipeline, image_pixels, pose_pixels, device, task_config):
image_pixels = [to_pil_image(img.to(torch.uint8)) for img in (image_pixels + 1.0) * 127.5]
generator = torch.Generator(device=device)
generator.manual_seed(task_config.seed)
frames = pipeline(
image_pixels, image_pose=pose_pixels, num_frames=pose_pixels.size(0),
tile_size=task_config.num_frames, tile_overlap=task_config.frames_overlap,
height=pose_pixels.shape[-2], width=pose_pixels.shape[-1], fps=7,
noise_aug_strength=task_config.noise_aug_strength, num_inference_steps=task_config.num_inference_steps,
generator=generator, min_guidance_scale=task_config.guidance_scale,
max_guidance_scale=task_config.guidance_scale, decode_chunk_size=8, output_type="pt", device=device
).frames.cpu()
video_frames = (frames * 255.0).to(torch.uint8)
for vid_idx in range(video_frames.shape[0]):
# deprecated first frame because of ref image
_video_frames = video_frames[vid_idx, 1:]
return _video_frames
@torch.no_grad()
def main(args):
if not args.no_use_float16 :
torch.set_default_dtype(torch.float16)
infer_config = OmegaConf.load(args.inference_config)
pipeline = create_pipeline(infer_config, device)
for task in infer_config.test_case:
############################################## Pre-process data ##############################################
pose_pixels, image_pixels = preprocess(
task.ref_video_path, task.ref_image_path,
resolution=task.resolution, sample_stride=task.sample_stride
)
########################################### Run MimicMotion pipeline ###########################################
_video_frames = run_pipeline(
pipeline,
image_pixels, pose_pixels,
device, task
)
################################### save results to output folder. ###########################################
save_to_mp4(
_video_frames,
f"{args.output_dir}/{os.path.basename(task.ref_video_path).split('.')[0]}" \
f"_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4",
fps=task.fps,
)
def set_logger(log_file=None, log_level=logging.INFO):
log_handler = logging.FileHandler(log_file, "w")
log_handler.setFormatter(
logging.Formatter("[%(asctime)s][%(name)s][%(levelname)s]: %(message)s")
)
log_handler.setLevel(log_level)
logger.addHandler(log_handler)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--log_file", type=str, default=None)
parser.add_argument("--inference_config", type=str, default="configs/test.yaml") #ToDo
parser.add_argument("--output_dir", type=str, default="outputs/", help="path to output")
parser.add_argument("--no_use_float16",
action="store_true",
help="Whether use float16 to speed up inference",
)
args = parser.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
set_logger(args.log_file \
if args.log_file is not None else f"{args.output_dir}/{datetime.now().strftime('%Y%m%d%H%M%S')}.log")
main(args)
logger.info(f"--- Finished ---")