-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathpredict.py
363 lines (315 loc) · 13.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# predict.py
import subprocess
import time
from cog import BasePredictor, Input, Path
import os
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from datetime import datetime
from torchvision.transforms.functional import pil_to_tensor, resize, center_crop
from constants import ASPECT_RATIO
MODEL_CACHE = "models"
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HOME"] = MODEL_CACHE
os.environ["TORCH_HOME"] = MODEL_CACHE
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
BASE_URL = f"https://weights.replicate.delivery/default/MimicMotion/{MODEL_CACHE}/"
def download_weights(url: str, dest: str) -> None:
# NOTE WHEN YOU EXTRACT SPECIFY THE PARENT FOLDER
start = time.time()
print("[!] Initiating download from URL: ", url)
print("[~] Destination path: ", dest)
if ".tar" in dest:
dest = os.path.dirname(dest)
command = ["pget", "-vf" + ("x" if ".tar" in url else ""), url, dest]
try:
print(f"[~] Running command: {' '.join(command)}")
subprocess.check_call(command, close_fds=False)
except subprocess.CalledProcessError as e:
print(
f"[ERROR] Failed to download weights. Command '{' '.join(e.cmd)}' returned non-zero exit status {e.returncode}."
)
raise
print("[+] Download completed in: ", time.time() - start, "seconds")
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
os.makedirs(MODEL_CACHE)
model_files = [
"DWPose.tar",
"MimicMotion.pth",
"MimicMotion_1-1.pth",
"SVD.tar",
]
for model_file in model_files:
url = BASE_URL + model_file
filename = url.split("/")[-1]
dest_path = os.path.join(MODEL_CACHE, filename)
if not os.path.exists(dest_path.replace(".tar", "")):
download_weights(url, dest_path)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
# Move imports here and make them global
# This ensures model files are downloaded before importing mimicmotion modules
global MimicMotionPipeline, create_pipeline, save_to_mp4, get_video_pose, get_image_pose
from mimicmotion.pipelines.pipeline_mimicmotion import MimicMotionPipeline
from mimicmotion.utils.loader import create_pipeline
from mimicmotion.utils.utils import save_to_mp4
from mimicmotion.dwpose.preprocess import get_video_pose, get_image_pose
# Load config with new checkpoint as default
self.config = OmegaConf.create(
{
"base_model_path": "models/SVD/stable-video-diffusion-img2vid-xt-1-1",
"ckpt_path": "models/MimicMotion_1-1.pth",
}
)
# Create the pipeline with the new checkpoint
self.pipeline = create_pipeline(self.config, self.device)
self.current_checkpoint = "v1-1"
self.current_dtype = torch.get_default_dtype()
def predict(
self,
motion_video: Path = Input(
description="Reference video file containing the motion to be mimicked"
),
appearance_image: Path = Input(
description="Reference image file for the appearance of the generated video"
),
resolution: int = Input(
description="Height of the output video in pixels. Width is automatically calculated.",
default=576,
ge=64,
le=1024,
),
chunk_size: int = Input(
description="Number of frames to generate in each processing chunk",
default=16,
ge=2,
),
frames_overlap: int = Input(
description="Number of overlapping frames between chunks for smoother transitions",
default=6,
ge=0,
),
denoising_steps: int = Input(
description="Number of denoising steps in the diffusion process. More steps can improve quality but increase processing time.",
default=25,
ge=1,
le=100,
),
noise_strength: float = Input(
description="Strength of noise augmentation. Higher values add more variation but may reduce coherence with the reference.",
default=0.0,
ge=0.0,
le=1.0,
),
guidance_scale: float = Input(
description="Strength of guidance towards the reference. Higher values adhere more closely to the reference but may reduce creativity.",
default=2.0,
ge=0.1,
le=10.0,
),
sample_stride: int = Input(
description="Interval for sampling frames from the reference video. Higher values skip more frames.",
default=2,
ge=1,
),
output_frames_per_second: int = Input(
description="Frames per second of the output video. Affects playback speed.",
default=15,
ge=1,
le=60,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed",
default=None,
),
checkpoint_version: str = Input(
description="Choose the checkpoint version to use",
choices=["v1", "v1-1"],
default="v1-1",
),
) -> Path:
"""Run a single prediction on the model"""
ref_video = motion_video
ref_image = appearance_image
num_frames = chunk_size
num_inference_steps = denoising_steps
noise_aug_strength = noise_strength
fps = output_frames_per_second
use_fp16 = True
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
need_pipeline_update = False
# Check if we need to switch checkpoints
if checkpoint_version != self.current_checkpoint:
if checkpoint_version == "v1":
self.config.ckpt_path = "models/MimicMotion.pth"
else: # v1-1
self.config.ckpt_path = "models/MimicMotion_1-1.pth"
need_pipeline_update = True
self.current_checkpoint = checkpoint_version
# Check if we need to switch dtype
target_dtype = torch.float16 if use_fp16 else torch.float32
if target_dtype != self.current_dtype:
torch.set_default_dtype(target_dtype)
need_pipeline_update = True
self.current_dtype = target_dtype
# Update pipeline if needed
if need_pipeline_update:
print(
f"Updating pipeline with checkpoint: {self.config.ckpt_path} and dtype: {torch.get_default_dtype()}"
)
self.pipeline = create_pipeline(self.config, self.device)
print(f"Using checkpoint: {self.config.ckpt_path}")
print(f"Using dtype: {torch.get_default_dtype()}")
print(
f"[!] ({type(ref_video)}) ref_video={ref_video}, "
f"[!] ({type(ref_image)}) ref_image={ref_image}, "
f"[!] ({type(resolution)}) resolution={resolution}, "
f"[!] ({type(num_frames)}) num_frames={num_frames}, "
f"[!] ({type(frames_overlap)}) frames_overlap={frames_overlap}, "
f"[!] ({type(num_inference_steps)}) num_inference_steps={num_inference_steps}, "
f"[!] ({type(noise_aug_strength)}) noise_aug_strength={noise_aug_strength}, "
f"[!] ({type(guidance_scale)}) guidance_scale={guidance_scale}, "
f"[!] ({type(sample_stride)}) sample_stride={sample_stride}, "
f"[!] ({type(fps)}) fps={fps}, "
f"[!] ({type(seed)}) seed={seed}, "
f"[!] ({type(use_fp16)}) use_fp16={use_fp16}"
)
# Input validation
if not ref_video.exists():
raise ValueError(f"Reference video file does not exist: {ref_video}")
if not ref_image.exists():
raise ValueError(f"Reference image file does not exist: {ref_image}")
if resolution % 8 != 0:
raise ValueError(f"Resolution must be a multiple of 8, got {resolution}")
if resolution < 64 or resolution > 1024:
raise ValueError(
f"Resolution must be between 64 and 1024, got {resolution}"
)
if num_frames <= frames_overlap:
raise ValueError(
f"Number of frames ({num_frames}) must be greater than frames overlap ({frames_overlap})"
)
if num_frames < 2:
raise ValueError(f"Number of frames must be at least 2, got {num_frames}")
if frames_overlap < 0:
raise ValueError(
f"Frames overlap must be non-negative, got {frames_overlap}"
)
if num_inference_steps < 1 or num_inference_steps > 100:
raise ValueError(
f"Number of inference steps must be between 1 and 100, got {num_inference_steps}"
)
if noise_aug_strength < 0.0 or noise_aug_strength > 1.0:
raise ValueError(
f"Noise augmentation strength must be between 0.0 and 1.0, got {noise_aug_strength}"
)
if guidance_scale < 0.1 or guidance_scale > 10.0:
raise ValueError(
f"Guidance scale must be between 0.1 and 10.0, got {guidance_scale}"
)
if sample_stride < 1:
raise ValueError(f"Sample stride must be at least 1, got {sample_stride}")
if fps < 1 or fps > 60:
raise ValueError(f"FPS must be between 1 and 60, got {fps}")
try:
# Preprocess
pose_pixels, image_pixels = self.preprocess(
str(ref_video),
str(ref_image),
resolution=resolution,
sample_stride=sample_stride,
)
# Run pipeline
video_frames = self.run_pipeline(
image_pixels,
pose_pixels,
num_frames=num_frames,
frames_overlap=frames_overlap,
num_inference_steps=num_inference_steps,
noise_aug_strength=noise_aug_strength,
guidance_scale=guidance_scale,
seed=seed,
)
# Save output
output_path = f"/tmp/output_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4"
save_to_mp4(video_frames, output_path, fps=fps)
return Path(output_path)
except Exception as e:
print(f"An error occurred during prediction: {str(e)}")
raise
def preprocess(self, video_path, image_path, resolution=576, sample_stride=2):
image_pixels = Image.open(image_path).convert("RGB")
image_pixels = pil_to_tensor(image_pixels) # (c, h, w)
h, w = image_pixels.shape[-2:]
if h > w:
w_target, h_target = resolution, int(resolution / ASPECT_RATIO // 64) * 64
else:
w_target, h_target = int(resolution / ASPECT_RATIO // 64) * 64, resolution
h_w_ratio = float(h) / float(w)
if h_w_ratio < h_target / w_target:
h_resize, w_resize = h_target, int(h_target / h_w_ratio)
else:
h_resize, w_resize = int(w_target * h_w_ratio), w_target
image_pixels = resize(image_pixels, [h_resize, w_resize], antialias=None)
image_pixels = center_crop(image_pixels, [h_target, w_target])
image_pixels = image_pixels.permute((1, 2, 0)).numpy()
image_pose = get_image_pose(image_pixels)
video_pose = get_video_pose(
video_path, image_pixels, sample_stride=sample_stride
)
pose_pixels = np.concatenate([np.expand_dims(image_pose, 0), video_pose])
image_pixels = np.transpose(np.expand_dims(image_pixels, 0), (0, 3, 1, 2))
return (
torch.from_numpy(pose_pixels.copy()) / 127.5 - 1,
torch.from_numpy(image_pixels) / 127.5 - 1,
)
def run_pipeline(
self,
image_pixels,
pose_pixels,
num_frames,
frames_overlap,
num_inference_steps,
noise_aug_strength,
guidance_scale,
seed,
):
image_pixels = [
Image.fromarray(
(img.cpu().numpy().transpose(1, 2, 0) * 127.5 + 127.5).astype(np.uint8)
)
for img in image_pixels
]
pose_pixels = pose_pixels.unsqueeze(0).to(self.device)
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
frames = self.pipeline(
image_pixels,
image_pose=pose_pixels,
num_frames=pose_pixels.size(1),
tile_size=num_frames,
tile_overlap=frames_overlap,
height=pose_pixels.shape[-2],
width=pose_pixels.shape[-1],
fps=7,
noise_aug_strength=noise_aug_strength,
num_inference_steps=num_inference_steps,
generator=generator,
min_guidance_scale=guidance_scale,
max_guidance_scale=guidance_scale,
decode_chunk_size=8,
output_type="pt",
device=self.device,
).frames.cpu()
video_frames = (frames * 255.0).to(torch.uint8)
return video_frames[0, 1:] # Remove the first frame (reference image)