|
1 |
| -import sys |
2 |
| - |
3 |
| -import torchstudio.tcpcodec as tc |
4 |
| -from torchstudio.modules import safe_exec |
5 |
| -import os |
6 |
| -import io |
7 |
| -from collections.abc import Iterable |
8 |
| -from tqdm.auto import tqdm |
9 |
| -import pickle |
10 |
| - |
11 |
| -original_path=sys.path |
12 |
| - |
13 |
| -app_socket = tc.connect() |
14 |
| -print("Analyze script connected\n", file=sys.stderr) |
15 |
| -while True: |
16 |
| - msg_type, msg_data = tc.recv_msg(app_socket) |
17 |
| - |
18 |
| - if msg_type == 'SetAnalyzerCode': |
19 |
| - print("Setting analyzer code...\n", file=sys.stderr) |
20 |
| - analyzer = None |
21 |
| - analyzer_code = tc.decode_strings(msg_data)[0] |
22 |
| - error_msg, analyzer_env = safe_exec(analyzer_code, description='analyzer definition') |
23 |
| - if error_msg is not None or 'analyzer' not in analyzer_env: |
24 |
| - print("Unknown analyzer definition error" if error_msg is None else error_msg, file=sys.stderr) |
25 |
| - |
26 |
| - if msg_type == 'StartAnalysisServer' and 'analyzer' in analyzer_env: |
27 |
| - print("Analyzing...\n", file=sys.stderr) |
28 |
| - |
29 |
| - analysis_server, address = tc.generate_server() |
30 |
| - |
31 |
| - if analyzer_env['analyzer'].train is None: |
32 |
| - request_msg='AnalysisServerRequestingAllSamples' |
33 |
| - elif analyzer_env['analyzer'].train==True: |
34 |
| - request_msg='AnalysisServerRequestingTrainingSamples' |
35 |
| - elif analyzer_env['analyzer'].train==False: |
36 |
| - request_msg='AnalysisServerRequestingValidationSamples' |
37 |
| - tc.send_msg(app_socket, request_msg, tc.encode_strings(address)) |
38 |
| - dataset_socket=tc.start_server(analysis_server) |
39 |
| - |
40 |
| - while True: |
41 |
| - dataset_msg_type, dataset_msg_data = tc.recv_msg(dataset_socket) |
42 |
| - |
43 |
| - if dataset_msg_type == 'NumSamples': |
44 |
| - num_samples=tc.decode_ints(dataset_msg_data)[0] |
45 |
| - pbar=tqdm(total=num_samples, desc='Analyzing...', bar_format='{l_bar}{bar}| {remaining} left\n\n') #see https://github.com/tqdm/tqdm#parameters |
46 |
| - |
47 |
| - if dataset_msg_type == 'InputTensorsID': |
48 |
| - input_tensors_id=tc.decode_ints(dataset_msg_data) |
49 |
| - |
50 |
| - if dataset_msg_type == 'OutputTensorsID': |
51 |
| - output_tensors_id=tc.decode_ints(dataset_msg_data) |
52 |
| - |
53 |
| - if dataset_msg_type == 'Labels': |
54 |
| - labels=tc.decode_strings(dataset_msg_data) |
55 |
| - |
56 |
| - if dataset_msg_type == 'StartSending': |
57 |
| - error_msg, return_value = safe_exec(analyzer_env['analyzer'].start_analysis, (num_samples, input_tensors_id, output_tensors_id, labels), description='analyzer definition') |
58 |
| - if error_msg is not None: |
59 |
| - pbar.close() |
60 |
| - print(error_msg, file=sys.stderr) |
61 |
| - dataset_socket.close() |
62 |
| - analysis_server.close() |
63 |
| - break |
64 |
| - |
65 |
| - if dataset_msg_type == 'TrainingSample': |
66 |
| - pbar.update(1) |
67 |
| - error_msg, return_value = safe_exec(analyzer_env['analyzer'].analyze_sample, (tc.decode_numpy_tensors(dataset_msg_data), True), description='analyzer definition') |
68 |
| - if error_msg is not None: |
69 |
| - pbar.close() |
70 |
| - print(error_msg, file=sys.stderr) |
71 |
| - dataset_socket.close() |
72 |
| - analysis_server.close() |
73 |
| - break |
74 |
| - |
75 |
| - if dataset_msg_type == 'ValidationSample': |
76 |
| - pbar.update(1) |
77 |
| - error_msg, return_value = safe_exec(analyzer_env['analyzer'].analyze_sample, (tc.decode_numpy_tensors(dataset_msg_data), False), description='analyzer definition') |
78 |
| - if error_msg is not None: |
79 |
| - pbar.close() |
80 |
| - print(error_msg, file=sys.stderr) |
81 |
| - dataset_socket.close() |
82 |
| - analysis_server.close() |
83 |
| - break |
84 |
| - |
85 |
| - if dataset_msg_type == 'DoneSending': |
86 |
| - pbar.close() |
87 |
| - error_msg, return_value = safe_exec(analyzer_env['analyzer'].finish_analysis, description='analyzer definition') |
88 |
| - tc.send_msg(dataset_socket, 'DoneReceiving') |
89 |
| - dataset_socket.close() |
90 |
| - analysis_server.close() |
91 |
| - if error_msg is not None: |
92 |
| - print(error_msg, file=sys.stderr) |
93 |
| - else: |
94 |
| - buffer=io.BytesIO() |
95 |
| - pickle.dump(analyzer_env['analyzer'].state_dict(), buffer) |
96 |
| - tc.send_msg(app_socket, 'AnalyzerState',buffer.getvalue()) |
97 |
| - tc.send_msg(app_socket, 'AnalysisWeights',tc.encode_floats(analyzer_env['analyzer'].weights)) |
98 |
| - print("Analysis complete") |
99 |
| - break |
100 |
| - |
101 |
| - if msg_type == 'LoadAnalyzerState': |
102 |
| - if 'analyzer' in analyzer_env: |
103 |
| - buffer=io.BytesIO(msg_data) |
104 |
| - analyzer_env['analyzer'].load_state_dict(pickle.load(buffer)) |
105 |
| - print("Analyzer state loaded") |
106 |
| - |
107 |
| - if msg_type == 'RequestAnalysisReport': |
108 |
| - resolution = tc.decode_ints(msg_data) |
109 |
| - if 'analyzer' in analyzer_env: |
110 |
| - error_msg, return_value = safe_exec(analyzer_env['analyzer'].generate_report, (resolution[0:2],resolution[2]), description='analyzer definition') |
111 |
| - if error_msg is not None: |
112 |
| - print(error_msg, file=sys.stderr) |
113 |
| - if return_value is not None: |
114 |
| - tc.send_msg(app_socket, 'ReportImage', tc.encode_image(return_value)) |
115 |
| - |
116 |
| - if msg_type == 'Exit': |
117 |
| - break |
| 1 | +import sys |
| 2 | + |
| 3 | +import torchstudio.tcpcodec as tc |
| 4 | +from torchstudio.modules import safe_exec |
| 5 | +import os |
| 6 | +import io |
| 7 | +from collections.abc import Iterable |
| 8 | +from tqdm.auto import tqdm |
| 9 | +import pickle |
| 10 | + |
| 11 | +original_path=sys.path |
| 12 | + |
| 13 | +app_socket = tc.connect() |
| 14 | +print("Analyze script connected\n", file=sys.stderr) |
| 15 | +while True: |
| 16 | + msg_type, msg_data = tc.recv_msg(app_socket) |
| 17 | + |
| 18 | + if msg_type == 'SetAnalyzerCode': |
| 19 | + print("Setting analyzer code...\n", file=sys.stderr) |
| 20 | + analyzer = None |
| 21 | + analyzer_code = tc.decode_strings(msg_data)[0] |
| 22 | + error_msg, analyzer_env = safe_exec(analyzer_code, description='analyzer definition') |
| 23 | + if error_msg is not None or 'analyzer' not in analyzer_env: |
| 24 | + print("Unknown analyzer definition error" if error_msg is None else error_msg, file=sys.stderr) |
| 25 | + |
| 26 | + if msg_type == 'StartAnalysisServer' and 'analyzer' in analyzer_env: |
| 27 | + print("Analyzing...\n", file=sys.stderr) |
| 28 | + |
| 29 | + analysis_server, address = tc.generate_server() |
| 30 | + |
| 31 | + if analyzer_env['analyzer'].train is None: |
| 32 | + request_msg='AnalysisServerRequestingAllSamples' |
| 33 | + elif analyzer_env['analyzer'].train==True: |
| 34 | + request_msg='AnalysisServerRequestingTrainingSamples' |
| 35 | + elif analyzer_env['analyzer'].train==False: |
| 36 | + request_msg='AnalysisServerRequestingValidationSamples' |
| 37 | + tc.send_msg(app_socket, request_msg, tc.encode_strings(address)) |
| 38 | + dataset_socket=tc.start_server(analysis_server) |
| 39 | + |
| 40 | + while True: |
| 41 | + dataset_msg_type, dataset_msg_data = tc.recv_msg(dataset_socket) |
| 42 | + |
| 43 | + if dataset_msg_type == 'NumSamples': |
| 44 | + num_samples=tc.decode_ints(dataset_msg_data)[0] |
| 45 | + pbar=tqdm(total=num_samples, desc='Analyzing...', bar_format='{l_bar}{bar}| {remaining} left\n\n') #see https://github.com/tqdm/tqdm#parameters |
| 46 | + |
| 47 | + if dataset_msg_type == 'InputTensorsID': |
| 48 | + input_tensors_id=tc.decode_ints(dataset_msg_data) |
| 49 | + |
| 50 | + if dataset_msg_type == 'OutputTensorsID': |
| 51 | + output_tensors_id=tc.decode_ints(dataset_msg_data) |
| 52 | + |
| 53 | + if dataset_msg_type == 'Labels': |
| 54 | + labels=tc.decode_strings(dataset_msg_data) |
| 55 | + |
| 56 | + if dataset_msg_type == 'StartSending': |
| 57 | + error_msg, return_value = safe_exec(analyzer_env['analyzer'].start_analysis, (num_samples, input_tensors_id, output_tensors_id, labels), description='analyzer definition') |
| 58 | + if error_msg is not None: |
| 59 | + pbar.close() |
| 60 | + print(error_msg, file=sys.stderr) |
| 61 | + dataset_socket.close() |
| 62 | + analysis_server.close() |
| 63 | + break |
| 64 | + |
| 65 | + if dataset_msg_type == 'TrainingSample': |
| 66 | + pbar.update(1) |
| 67 | + error_msg, return_value = safe_exec(analyzer_env['analyzer'].analyze_sample, (tc.decode_numpy_tensors(dataset_msg_data), True), description='analyzer definition') |
| 68 | + if error_msg is not None: |
| 69 | + pbar.close() |
| 70 | + print(error_msg, file=sys.stderr) |
| 71 | + dataset_socket.close() |
| 72 | + analysis_server.close() |
| 73 | + break |
| 74 | + |
| 75 | + if dataset_msg_type == 'ValidationSample': |
| 76 | + pbar.update(1) |
| 77 | + error_msg, return_value = safe_exec(analyzer_env['analyzer'].analyze_sample, (tc.decode_numpy_tensors(dataset_msg_data), False), description='analyzer definition') |
| 78 | + if error_msg is not None: |
| 79 | + pbar.close() |
| 80 | + print(error_msg, file=sys.stderr) |
| 81 | + dataset_socket.close() |
| 82 | + analysis_server.close() |
| 83 | + break |
| 84 | + |
| 85 | + if dataset_msg_type == 'DoneSending': |
| 86 | + pbar.close() |
| 87 | + error_msg, return_value = safe_exec(analyzer_env['analyzer'].finish_analysis, description='analyzer definition') |
| 88 | + tc.send_msg(dataset_socket, 'DoneReceiving') |
| 89 | + dataset_socket.close() |
| 90 | + analysis_server.close() |
| 91 | + if error_msg is not None: |
| 92 | + print(error_msg, file=sys.stderr) |
| 93 | + else: |
| 94 | + buffer=io.BytesIO() |
| 95 | + pickle.dump(analyzer_env['analyzer'].state_dict(), buffer) |
| 96 | + tc.send_msg(app_socket, 'AnalyzerState',buffer.getvalue()) |
| 97 | + tc.send_msg(app_socket, 'AnalysisWeights',tc.encode_floats(analyzer_env['analyzer'].weights)) |
| 98 | + print("Analysis complete") |
| 99 | + break |
| 100 | + |
| 101 | + if msg_type == 'LoadAnalyzerState': |
| 102 | + if 'analyzer' in analyzer_env: |
| 103 | + buffer=io.BytesIO(msg_data) |
| 104 | + analyzer_env['analyzer'].load_state_dict(pickle.load(buffer)) |
| 105 | + print("Analyzer state loaded") |
| 106 | + |
| 107 | + if msg_type == 'RequestAnalysisReport': |
| 108 | + resolution = tc.decode_ints(msg_data) |
| 109 | + if 'analyzer' in analyzer_env: |
| 110 | + error_msg, return_value = safe_exec(analyzer_env['analyzer'].generate_report, (resolution[0:2],resolution[2]), description='analyzer definition') |
| 111 | + if error_msg is not None: |
| 112 | + print(error_msg, file=sys.stderr) |
| 113 | + if return_value is not None: |
| 114 | + tc.send_msg(app_socket, 'ReportImage', tc.encode_image(return_value)) |
| 115 | + |
| 116 | + if msg_type == 'Exit': |
| 117 | + break |
0 commit comments