forked from huankoh/PSICHIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
275 lines (231 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import json
import pandas as pd
import torch
import numpy as np
import os
import random
# Utils
from utils.utils import DataLoader, compute_pna_degrees, virtual_screening, CustomWeightedRandomSampler
from utils.dataset import * # data
from utils.trainer import Trainer
from utils.metrics import *
# Preprocessing
from utils import protein_init, ligand_init
# Model
from models.net import net
import argparse
import ast
def tuple_type(s):
try:
# Safely evaluate the string as a tuple
value = ast.literal_eval(s)
if not isinstance(value, tuple):
raise ValueError
except (ValueError, SyntaxError):
raise argparse.ArgumentTypeError(f"Invalid tuple value: {s}")
return value
def list_type(s):
try:
# Safely evaluate the string as a tuple
value = ast.literal_eval(s)
if not isinstance(value, list):
raise ValueError
except (ValueError, SyntaxError):
raise argparse.ArgumentTypeError(f"Invalid list value: {s}")
return value
parser = argparse.ArgumentParser()
### Seed and device
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--device', type=str, default='cuda:0', help='')
parser.add_argument('--config_path',type=str,default='config.json')
### Data and Pre-processing
parser.add_argument('--datafolder', type=str, default='./dataset/pdb2020', help='protein data path')
parser.add_argument('--result_path', type=str,default='./result/PDB2020_BENCHMARK/',help='path to save results')
parser.add_argument('--save_interpret', type=bool,default=True,help='path to save results')
# For PDBBIND datasets - we train for 30K iteration
parser.add_argument('--regression_task',type=bool, help='True if regression else False')
# For any classification type - we train for 100 epochs (same as DrugBAN) [change --total_iters = None]
parser.add_argument('--classification_task',type=bool, help='True if classification else False')
parser.add_argument('--mclassification_task',type=int, help='number of multiclassification, 0 if no multiclass task')
parser.add_argument('--epochs', type=int, default=30, help='')
parser.add_argument('--evaluate_epoch',type=int,default=1)
parser.add_argument('--total_iters',type=int,default=None)
parser.add_argument('--evaluate_step',type=int,default=500)
# optimizer params - only change this for PDBBind v2016
parser.add_argument('--lrate',type=float,default=1e-4,help='learning rate for PSICHIC') # change to 1e-5 for LargeScaleInteractionDataset
parser.add_argument('--eps',type=float,default=1e-8, help='higher = closer to SGD') # change to 1e-5 for PDBv2016
parser.add_argument('--betas',type=tuple_type, default="(0.9,0.999)") # change to (0.9,0.99) for PDBv2016
# batch size
parser.add_argument('--batch_size',type=int,default=16)
# sampling method - only used for pretraining large-scale interaction dataset ; allow self specified weights to the samples
parser.add_argument('--sampling_col',type=str,default='')
parser.add_argument('--trained_model_path',type=str,default='',help='This does not need to be perfectly aligned, as you can add prediction head for some other tasks as well!')
parser.add_argument('--finetune_modules',type=list_type,default=None)
# notebook mode?
parser.add_argument('--nb_mode',type=bool,default=False)
args = parser.parse_args()
if args.trained_model_path:
with open(args.config_path,'r') as f:
config = json.load(f)
else:
with open(os.path.join(args.trained_model_path,'config.json'),'r') as f:
config = json.load(f)
# overwrite
config['optimizer']['lrate'] = args.lrate
config['optimizer']['eps'] = args.eps
config['optimizer']['betas'] = args.betas
config['tasks']['regression_task'] = args.regression_task
config['tasks']['classification_task'] = args.classification_task
config['tasks']['mclassification_task'] = args.mclassification_task
# device
device = torch.device(args.device)
if not os.path.exists(args.result_path):
os.makedirs(args.result_path)
model_path = os.path.join(args.result_path,'save_model_seed{}'.format(args.seed))
if not os.path.exists(model_path):
os.makedirs(model_path)
interpret_path = os.path.join(args.result_path,'interpretation_result_seed{}'.format(args.seed))
if not os.path.exists(interpret_path):
os.makedirs(interpret_path)
if args.epochs is not None and args.total_iters is not None:
print('If epochs and total iters are both not None, then we only use iters.')
args.epochs = None
print(args)
with open(os.path.join(args.result_path, 'model_params.txt'), 'w') as f:
f.write(str(args))
# seed initialize
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
## import files
train_df = pd.read_csv(os.path.join(args.datafolder,'train.csv'))
test_df = pd.read_csv(os.path.join(args.datafolder,'test.csv'))
valid_path = os.path.join(args.datafolder,'valid.csv')
valid_df = None
if os.path.exists(valid_path):
valid_df = pd.read_csv(valid_path)
protein_seqs = list(set(train_df['Protein'].tolist()+test_df['Protein'].tolist()+valid_df['Protein'].tolist()))
ligand_smiles = list(set(train_df['Ligand'].tolist()+test_df['Ligand'].tolist()+valid_df['Ligand'].tolist()))
else:
protein_seqs = list(set(train_df['Protein'].tolist()+test_df['Protein'].tolist()))
ligand_smiles = list(set(train_df['Ligand'].tolist()+test_df['Ligand'].tolist()))
protein_path = os.path.join(args.datafolder,'protein.pt')
if os.path.exists(protein_path):
print('Loading Protein Graph data...')
protein_dict = torch.load(protein_path)
else:
print('Initialising Protein Sequence to Protein Graph...')
protein_dict = protein_init(protein_seqs)
torch.save(protein_dict,protein_path)
ligand_path = os.path.join(args.datafolder,'ligand.pt')
if os.path.exists(ligand_path):
print('Loading Ligand Graph data...')
ligand_dict = torch.load(ligand_path)
else:
print('Initialising Ligand SMILES to Ligand Graph...')
ligand_dict = ligand_init(ligand_smiles)
torch.save(ligand_dict,ligand_path)
torch.cuda.empty_cache()
##TODO: drop any invalid smiles
##TODO: drop any invalid smiles
##
## training loader
train_shuffle = True
train_sampler = None
if args.sampling_col:
train_weights = torch.from_numpy(train_df[args.sampling_col].values)
def sampler_from_weights(weights):
sampler = CustomWeightedRandomSampler(weights, len(weights), replacement=True)
return sampler
train_shuffle = False
train_sampler = sampler_from_weights(train_weights)
if train_sampler is not None:
print('shuffle should be False: ',train_shuffle)
train_dataset = ProteinMoleculeDataset(train_df, ligand_dict, protein_dict, device=args.device)
test_dataset = ProteinMoleculeDataset(test_df, ligand_dict, protein_dict, device=args.device)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=train_shuffle,
sampler=train_sampler, follow_batch=['mol_x', 'clique_x', 'prot_node_aa'])
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
follow_batch=['mol_x', 'clique_x', 'prot_node_aa'])
valid_dataset, valid_loader = None, None
if valid_df is not None:
valid_dataset = ProteinMoleculeDataset(valid_df, ligand_dict,protein_dict, device=args.device)
valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False,
follow_batch=['mol_x', 'clique_x', 'prot_node_aa']
)
if not args.trained_model_path:
degree_path = os.path.join(args.datafolder,'degree.pt')
if not os.path.exists(degree_path):
print('Computing training data degrees for PNA')
mol_deg, clique_deg, prot_deg = compute_pna_degrees(train_loader)
degree_dict = {'ligand_deg':mol_deg, 'clique_deg':clique_deg, 'protein_deg':prot_deg}
else:
degree_dict = torch.load(degree_path)
mol_deg, clique_deg, prot_deg = degree_dict['ligand_deg'], degree_dict['clique_deg'], degree_dict['protein_deg']
torch.save(degree_dict, os.path.join(args.result_path,'save_model_seed{}'.format(args.seed),'degree.pt'))
else:
degree_dict = torch.load(os.path.join(args.trained_model_path,'degree.pt'))
param_dict = os.path.join(args.trained_model_path,'model.pt')
mol_deg, prot_deg = degree_dict['ligand_deg'],degree_dict['protein_deg']
model = net(mol_deg, prot_deg,
# MOLECULE
mol_in_channels=config['params']['mol_in_channels'], prot_in_channels=config['params']['prot_in_channels'],
prot_evo_channels=config['params']['prot_evo_channels'],
hidden_channels=config['params']['hidden_channels'], pre_layers=config['params']['pre_layers'],
post_layers=config['params']['post_layers'],aggregators=config['params']['aggregators'],
scalers=config['params']['scalers'],total_layer=config['params']['total_layer'],
K = config['params']['K'],heads=config['params']['heads'],
dropout=config['params']['dropout'],
dropout_attn_score=config['params']['dropout_attn_score'],
# output
regression_head=config['tasks']['regression_task'],
classification_head=config['tasks']['classification_task'] ,
multiclassification_head=config['tasks']['mclassification_task'],
device=device).to(device)
model.reset_parameters()
if args.trained_model_path:
model.load_state_dict(torch.load(param_dict,map_location=args.device),strict=False)
print('Pretrained model loaded!')
nParams = sum([p.nelement() for p in model.parameters()])
print('Model loaded with number of parameters being:', str(nParams))
with open(os.path.join(args.result_path,'save_model_seed{}'.format(args.seed),'config.json'),'w') as f:
json.dump(config,f, indent=4)
## Evaluation metric type depends on task
if config['tasks']['regression_task']:
evaluation_metric = 'rmse'
elif config['tasks']['classification_task']:
evaluation_metric = 'roc'
elif config['tasks']['mclassification_task']:
evaluation_metric = 'macro_f1'
else:
raise Exception("no valid interaction property prediction task...")
engine = Trainer(model=model, lrate=config['optimizer']['lrate'], min_lrate=config['optimizer']['min_lrate'],
wdecay=config['optimizer']['weight_decay'], betas=config['optimizer']['betas'],
eps=config['optimizer']['eps'], amsgrad=config['optimizer']['amsgrad'],
clip=config['optimizer']['clip'], steps_per_epoch=len(train_loader),
num_epochs=args.epochs,total_iters = args.total_iters,
warmup_iters=config['optimizer']['warmup_iters'],
lr_decay_iters=config['optimizer']['lr_decay_iters'],
schedule_lr=config['optimizer']['schedule_lr'], regression_weight=1, classification_weight=1,
evaluate_metric=evaluation_metric, result_path=args.result_path, runid=args.seed,
finetune_modules=args.finetune_modules,
device=device)
print('-'*50)
print('start training model')
if args.epochs:
engine.train_epoch(train_loader, val_loader = valid_loader, test_loader = test_loader, evaluate_epoch = args.evaluate_epoch)
else:
engine.train_step(train_loader, val_loader = valid_loader, test_loader = test_loader, evaluate_step = args.evaluate_step)
print('finished training model')
print('-'*50)
print('loading best checkpoint and predicting test data')
print('-'*50)
model.load_state_dict(torch.load(os.path.join(args.result_path,'save_model_seed{}'.format(args.seed),'model.pt')))
screen_df = virtual_screening(test_df, model, test_loader,
result_path=os.path.join(args.result_path, "interpretation_result_seed{}".format(args.seed)),
save_interpret=args.save_interpret,
ligand_dict=ligand_dict, device=args.device)
screen_df.to_csv(os.path.join(args.result_path,'test_prediction_seed{}.csv'.format(args.seed)),index=False)