@@ -10,6 +10,7 @@ module linear-algebra.linear-combinations-tuples-of-vectors-left-modules-rings w
1010open import elementary-number-theory.natural-numbers
1111
1212open import foundation.action-on-identifications-functions
13+ open import foundation.coproduct-types
1314open import foundation.identity-types
1415open import foundation.universe-levels
1516
@@ -20,6 +21,8 @@ open import lists.functoriality-tuples
2021open import lists.tuples
2122
2223open import ring-theory.rings
24+
25+ open import univalent-combinatorics.standard-finite-types
2326```
2427
2528</details >
@@ -291,3 +294,151 @@ module _
291294 ( vectors-b))
292295 by refl
293296```
297+
298+ ### Whenever the coefficient tuple is the trivial tuple, the linear combination is equal to the zero element
299+
300+ ``` agda
301+ module _
302+ {l1 l2 : Level}
303+ (R : Ring l1)
304+ (M : left-module-Ring l2 R)
305+ where
306+
307+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring :
308+ (n : ℕ) →
309+ (vectors : tuple (type-left-module-Ring R M) n) →
310+ linear-combination-tuple-left-module-Ring R M
311+ ( trivial-tuple-Ring R n)
312+ ( vectors) =
313+ zero-left-module-Ring R M
314+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring n empty-tuple =
315+ refl
316+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring
317+ (succ-ℕ n) (x ∷ vectors) =
318+ equational-reasoning
319+ linear-combination-tuple-left-module-Ring R M
320+ ( zero-Ring R ∷ trivial-tuple-Ring R n)
321+ ( x ∷ vectors)
322+ = add-left-module-Ring R M
323+ ( linear-combination-tuple-left-module-Ring R M
324+ ( trivial-tuple-Ring R n)
325+ ( vectors))
326+ ( mul-left-module-Ring R M (zero-Ring R) x)
327+ by refl
328+ = add-left-module-Ring R M
329+ ( linear-combination-tuple-left-module-Ring R M
330+ ( trivial-tuple-Ring R n)
331+ ( vectors))
332+ ( zero-left-module-Ring R M)
333+ by
334+ ap
335+ ( λ y → add-left-module-Ring R M
336+ ( linear-combination-tuple-left-module-Ring R M
337+ ( trivial-tuple-Ring R n)
338+ ( vectors))
339+ ( y))
340+ (left-zero-law-mul-left-module-Ring R M x)
341+ = add-left-module-Ring R M
342+ ( zero-left-module-Ring R M)
343+ ( zero-left-module-Ring R M)
344+ by
345+ ap
346+ ( λ y → add-left-module-Ring R M y (zero-left-module-Ring R M))
347+ ( zero-trivial-tuple-linear-combination-tuple-left-module-Ring n
348+ ( vectors))
349+ = zero-left-module-Ring R M
350+ by left-unit-law-add-left-module-Ring R M (zero-left-module-Ring R M)
351+ ```
352+
353+ ### Whenever the coefficient tuple is the trivial tuple besides one value, that value determines the value of the linear combination
354+
355+ ``` agda
356+ module _
357+ {l1 l2 : Level}
358+ (R : Ring l1)
359+ (M : left-module-Ring l2 R)
360+ where
361+
362+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring :
363+ (n : ℕ) →
364+ (r : type-Ring R)
365+ (vectors : tuple (type-left-module-Ring R M) n) →
366+ (i : Fin n) →
367+ linear-combination-tuple-left-module-Ring R M
368+ ( with-value-tuple i r (trivial-tuple-Ring R n))
369+ ( vectors) =
370+ mul-left-module-Ring R M r (component-tuple n vectors i)
371+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring
372+ (succ-ℕ n) r (x ∷ vectors) (inr _) =
373+ equational-reasoning
374+ linear-combination-tuple-left-module-Ring R M
375+ ( with-value-tuple (inr _) r (trivial-tuple-Ring R (succ-ℕ n)))
376+ ( x ∷ vectors)
377+ = linear-combination-tuple-left-module-Ring R M
378+ ( r ∷ (trivial-tuple-Ring R n))
379+ ( x ∷ vectors)
380+ by refl
381+ = add-left-module-Ring R M
382+ ( linear-combination-tuple-left-module-Ring R M
383+ ( trivial-tuple-Ring R n)
384+ ( vectors))
385+ ( mul-left-module-Ring R M r x)
386+ by refl
387+ = add-left-module-Ring R M
388+ ( zero-left-module-Ring R M)
389+ ( mul-left-module-Ring R M r x)
390+ by
391+ ap
392+ ( λ y → add-left-module-Ring R M y (mul-left-module-Ring R M r x))
393+ ( zero-trivial-tuple-linear-combination-tuple-left-module-Ring R M n
394+ ( vectors))
395+ = mul-left-module-Ring R M r x
396+ by left-unit-law-add-left-module-Ring R M (mul-left-module-Ring R M r x)
397+ = mul-left-module-Ring R M r
398+ ( component-tuple (succ-ℕ n) (x ∷ vectors) (inr _))
399+ by ap (λ y → mul-left-module-Ring R M r y) refl
400+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring
401+ (succ-ℕ n) r (x ∷ vectors) (inl i) =
402+ equational-reasoning
403+ linear-combination-tuple-left-module-Ring R M
404+ ( with-value-tuple (inl i) r (trivial-tuple-Ring R (succ-ℕ n)))
405+ ( x ∷ vectors)
406+ = linear-combination-tuple-left-module-Ring R M
407+ ( zero-Ring R ∷ (with-value-tuple i r (trivial-tuple-Ring R n)))
408+ ( x ∷ vectors)
409+ by refl
410+ = add-left-module-Ring R M
411+ ( linear-combination-tuple-left-module-Ring R M
412+ ( with-value-tuple i r (trivial-tuple-Ring R n))
413+ ( vectors))
414+ ( mul-left-module-Ring R M (zero-Ring R) x)
415+ by refl
416+ = add-left-module-Ring R M
417+ ( linear-combination-tuple-left-module-Ring R M
418+ ( with-value-tuple i r (trivial-tuple-Ring R n))
419+ ( vectors))
420+ ( zero-left-module-Ring R M)
421+ by
422+ ap
423+ ( λ y → add-left-module-Ring R M
424+ ( linear-combination-tuple-left-module-Ring R M
425+ ( with-value-tuple i r (trivial-tuple-Ring R n))
426+ ( vectors))
427+ ( y))
428+ ( left-zero-law-mul-left-module-Ring R M x)
429+ = linear-combination-tuple-left-module-Ring R M
430+ ( with-value-tuple i r (trivial-tuple-Ring R n))
431+ ( vectors)
432+ by right-unit-law-add-left-module-Ring R M
433+ ( linear-combination-tuple-left-module-Ring R M
434+ ( with-value-tuple i r (trivial-tuple-Ring R n))
435+ ( vectors))
436+ = mul-left-module-Ring R M r
437+ ( component-tuple (succ-ℕ n) (x ∷ vectors) (inl i))
438+ by
439+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring
440+ ( n)
441+ ( r)
442+ ( vectors)
443+ ( i)
444+ ```
0 commit comments