-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathoptimize_pose_linear.py
68 lines (50 loc) · 2.58 KB
/
optimize_pose_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch.nn
import Spline
import nerf
class Model(nerf.Model):
def __init__(self, se3_start, se3_end):
super().__init__()
self.start = se3_start
self.end = se3_end
def build_network(self, args):
self.graph = Graph(args, D=8, W=256, input_ch=63, input_ch_views=27, output_ch=4, skips=[4], use_viewdirs=True)
self.graph.se3 = torch.nn.Embedding(self.start.shape[0], 6*2)
start_end = torch.cat([self.start, self.end], -1)
self.graph.se3.weight.data = torch.nn.Parameter(start_end)
return self.graph
def setup_optimizer(self, args):
grad_vars = list(self.graph.nerf.parameters())
if args.N_importance > 0:
grad_vars += list(self.graph.nerf_fine.parameters())
self.optim = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
grad_vars_se3 = list(self.graph.se3.parameters())
self.optim_se3 = torch.optim.Adam(params=grad_vars_se3, lr=args.lrate)
return self.optim, self.optim_se3
class Graph(nerf.Graph):
def __init__(self, args, D=8, W=256, input_ch=63, input_ch_views=27, output_ch=4, skips=[4], use_viewdirs=True):
super().__init__(args, D, W, input_ch, input_ch_views, output_ch, skips, use_viewdirs)
self.pose_eye = torch.eye(3, 4)
self.se3_start = None
self.se3_end = None
def get_pose(self, i, img_idx, args):
se3_start = self.se3.weight[:, :6][img_idx]
se3_end = self.se3.weight[:, 6:][img_idx]
pose_nums = torch.arange(args.deblur_images).reshape(1, -1).repeat(se3_start.shape[0], 1)
seg_pos_x = torch.arange(se3_start.shape[0]).reshape([se3_start.shape[0], 1]).repeat(1, args.deblur_images)
se3_start = se3_start[seg_pos_x, :]
se3_end = se3_end[seg_pos_x, :]
spline_poses = Spline.SplineN_linear(se3_start, se3_end, pose_nums, args.deblur_images)
return spline_poses
def get_pose_even(self, i, img_idx, num):
deblur_images_num = num+1
se3_start = self.se3.weight[:, :6][img_idx]
se3_end = self.se3.weight[:, 6:][img_idx]
pose_nums = torch.arange(deblur_images_num).reshape(1, -1).repeat(se3_start.shape[0],1)
seg_pos_x = torch.arange(se3_start.shape[0]).reshape([se3_start.shape[0], 1]).repeat(1, deblur_images_num)
se3_start = se3_start[seg_pos_x, :]
se3_end = se3_end[seg_pos_x, :]
spline_poses = Spline.SplineN_linear(se3_start, se3_end, pose_nums, deblur_images_num)
return spline_poses
def get_gt_pose(self, poses, args):
a = self.pose_eye
return poses