-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_metrics.py
executable file
·145 lines (111 loc) · 5.31 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from diff_img import *
import os
import torch
from math import exp
import torch.nn.functional as F
from torch.autograd import Variable
import math
from lpips import lpips
import cv2
import run_nerf_helpers
os.environ["KMP_BLOCKTIME"] = "0"
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
new_save_dir = './baseline'
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size/2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size))
return window
def SSIM(img1, img2):
(_, channel, _, _) = img1.size()
window_size = 11
window = create_window(window_size, channel).cuda()
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def PSNR(img1, img2, mask=None):
if mask is not None:
mask = mask.cuda()
mse = (img1 - img2) ** 2
B,C,H,W=mse.size()
mse = torch.sum(mse * mask.float()) / (torch.sum(mask.float())*C)
else:
mse = torch.mean( (img1 - img2) ** 2 )
if mse == 0:
return 100
PIXEL_MAX = 1
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def test():
RESULTS_ALL_DICT = {}
RESULTS_DIR = '../rolling-shutter-video/logs/Unreal-RS'
DATASET = sorted(os.listdir(RESULTS_DIR))
METHOD_LIST = ["Linear", "Cubic"]
for datasets_name in DATASET:
RESULTS_ALL_DICT[datasets_name+"_PSNR"] = {}
RESULTS_ALL_DICT[datasets_name+"_SSIM"] = {}
RESULTS_ALL_DICT[datasets_name+"_LPIPS"] = {}
for method in METHOD_LIST:
imgs_sharp_dir = os.path.join('../rolling-shutter-video/data/Unreal-RS', datasets_name, 'mid')
imgs_render_dir = os.path.join(RESULTS_DIR, datasets_name, datasets_name+'_'+method, 'test_poses_mid', 'img_test_200000')
save_dir = os.path.join(new_save_dir, method, datasets_name)
os.makedirs(save_dir, exist_ok=True)
imgs_sharp = run_nerf_helpers.load_imgs(imgs_sharp_dir)
imgs_render = run_nerf_helpers.load_imgs(imgs_render_dir)
f_metric_all = open(save_dir + '/metric_all.txt', 'w')
f_metric_avg = open(save_dir + '/metric_avg.txt', 'w')
f_metric_all.write(
'# frame_id, PSNR_pred, PSNR_pred_mask, SSIM_pred, LPIPS_pred\n')
f_metric_avg.write(
'# avg_PSNR_pred, avg_PSNR_pred_mask, avg_SSIM_pred, avg_LPIPS_pred\n')
loss_fn_alex = lpips.LPIPS(net='alex')
sum_psnr = 0.
sum_psnr_mask = 0.
sum_ssim = 0.
sum_lpips = 0.
sum_time = 0.
n_frames = 0
for i in range(imgs_render.shape[0]):
# compute metrics
predict_GS = imgs_render[i].permute(2, 0, 1).unsqueeze(0)
GT_GS = imgs_sharp[i].permute(2, 0, 1).unsqueeze(0)
psnr_pred = PSNR(predict_GS, GT_GS)
ssim_pred = SSIM(predict_GS, GT_GS)
# lpips_pred = 0.
lpips_pred = loss_fn_alex(predict_GS, GT_GS) # compute LPIPS
sum_psnr += psnr_pred
sum_ssim += ssim_pred
sum_lpips += lpips_pred
n_frames += 1
print('PSNR(%.8f dB) SSIM(%.8f) LPIPS(%.8f)\n' %
(psnr_pred, ssim_pred, lpips_pred))
f_metric_all.write('%d %.8f %.8f %.8f\n' % (
i, psnr_pred, ssim_pred, lpips_pred))
psnr_avg = sum_psnr / n_frames
psnr_avg_mask = sum_psnr_mask / n_frames
ssim_avg = sum_ssim / n_frames
lpips_avg = sum_lpips / n_frames
print('PSNR_avg (%.6f dB) SSIM_avg (%.6f) LPIPS_avg (%.6f) ' % (
psnr_avg, ssim_avg, lpips_avg))
f_metric_avg.write('%.6f %.6f %.6f\n' %
(psnr_avg, ssim_avg, lpips_avg))
metrics = np.array([float(psnr_avg), float(ssim_avg), float(lpips_avg.squeeze())])
RESULTS_ALL_DICT[datasets_name+"_PSNR"][method] = metrics[0]
RESULTS_ALL_DICT[datasets_name+"_SSIM"][method] = metrics[1]
RESULTS_ALL_DICT[datasets_name+"_LPIPS"][method] = metrics[2]
import pandas as pd
pd.DataFrame(RESULTS_ALL_DICT).to_csv(os.path.join('./baseline', 'USB_NeRF.csv'))
if __name__=='__main__':
test()