-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
64 lines (55 loc) · 2.07 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import matplotlib.pyplot as plt
class environment():
def __init__(self, bandits, agents):
self.bandits = bandits
self.agents = agents
self.results = None
self.K = len(self.bandits)
self.M = len(self.agents)
def reset(self):
for i in range(self.M):
self.agents[i].reset()
def run(self, horizon=10000, experiments=1):
results = np.zeros((self.M, experiments, horizon))
for m in range(self.M):
agent = self.agents[m]
for i in range(experiments):
self.reset()
for t in range(horizon):
action = agent.select_arm()
reward = self.bandits[action].draw()
results[m][i][t] = reward
agent.update(action, reward)
self.results = results
def plot_result(self, result, ax):
horizon = result.shape[1]
top_mean = self.bandits[0].mean_return
for i in range(1, self.K):
if self.bandits[i].mean_return > top_mean:
top_mean = self.bandits[i].mean_return
best_case_reward = top_mean * np.arange(1, horizon+1)
cumulated_reward = np.cumsum(result, axis=1)
regret = best_case_reward - cumulated_reward[:horizon]
y = np.mean(regret, axis=0)
x = np.arange(len(y))
std = np.std(regret, axis=0)
#print(len(std))
y_up_err = y + std
y_low_err = y - std
ax.plot(x, y)
ax.fill_between(x, y_low_err, y_up_err, alpha=0.3)
#plt.show()
def plot_results(self):
if self.results is None:
print("No results yet.")
return -1
fig, ax = plt.subplots()
for m in range(self.M):
result = self.results[m]
self.plot_result(result, ax)
plt.ylim(-100, 7300)
plt.legend([self.agents[i].get_name() for i in range(self.M)])
plt.xlabel("Time step")
plt.ylabel("Regret")
plt.show()