-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcam_model.py
502 lines (434 loc) · 19.9 KB
/
dcam_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import numpy as np
import resnet
from einops import rearrange
def _AsppConv(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1):
asppconv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=False),
nn.GroupNorm(out_channels // 32, out_channels),
nn.ReLU()
)
return asppconv
class AsppModule(nn.Module):
def __init__(self, output_stride=16):
super(AsppModule, self).__init__()
# output_stride choice
if output_stride == 16:
atrous_rates = [0, 6, 12, 18]
elif output_stride == 8:
atrous_rates = 2 * [0, 12, 24, 36]
else:
raise Warning("output_stride must be 8 or 16!")
self._atrous_convolution1 = _AsppConv(2048, 256, 1, 1)
self._atrous_convolution2 = _AsppConv(2048, 256, 3, 1, padding=atrous_rates[1], dilation=atrous_rates[1]
)
self._atrous_convolution3 = _AsppConv(2048, 256, 3, 1, padding=atrous_rates[2], dilation=atrous_rates[2]
)
self._atrous_convolution4 = _AsppConv(2048, 256, 3, 1, padding=atrous_rates[3], dilation=atrous_rates[3]
)
self._image_pool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(2048, 256, kernel_size=1, bias=False),
nn.GroupNorm(32, 256),
nn.ReLU()
)
def forward(self, input):
input1 = self._atrous_convolution1(input)
input2 = self._atrous_convolution2(input)
input3 = self._atrous_convolution3(input)
input4 = self._atrous_convolution4(input)
input5 = self._image_pool(input)
input5 = F.interpolate(input=input5, size=input4.size()[2:4], mode='bilinear', align_corners=True)
return torch.cat((input1, input2, input3, input4, input5), dim=1)
class MSEncoder(nn.Module):
def __init__(self, output_stride=16):
super(MSEncoder, self).__init__()
self.ASPP = AsppModule(output_stride=output_stride)
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1280, 384, 1, bias=True)
def forward(self, input):
input = self.ASPP(input)
input = self.conv1(input)
return input
class GRT(nn.Module):
def __init__(self, d_model,dim_feedforward=512, nhead=4, dropout=0.1,
normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = nn.ReLU()
self.normalize_before = normalize_before
self.feature_trans=nn.Sequential(nn.Conv2d(d_model*3,d_model*2,kernel_size=1,stride=1,padding=0,bias=True),nn.GroupNorm(1,d_model*2),nn.ReLU(),nn.Dropout(0.05),nn.Conv2d(d_model*2,d_model*2,kernel_size=1,stride=1,padding=0,bias=True),nn.GroupNorm(1,d_model*2),nn.ReLU(),nn.Conv2d(d_model*2,d_model,kernel_size=1,stride=1,padding=0,bias=True))
def forward(self, srcs):
src,srclow=srcs
src=self.feature_trans(torch.cat([src,srclow],1))+src
b,c,h,w=src.size()
src=rearrange(src,'b c h w->(h w) b c')
src2 = self.self_attn(src, src, src)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
feat=rearrange(src,'(h w) b c->b c h w',h=h,w=w)
return (feat,srclow)
class WindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class LocalRTBLOCK(nn.Module):
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.02,
act_layer=nn.ReLU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.H = None
self.W = None
self.passlayer=nn.Sequential(nn.Conv2d(dim,dim,3,1,1),nn.GroupNorm(1,dim),nn.ReLU(inplace=True),nn.Conv2d(dim,dim,3,1,1),nn.GroupNorm(1,dim),nn.ReLU(inplace=True),nn.Conv2d(dim,dim,1,1,0))
def forward(self, x, mask_matrix):
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
passfeat= self.passlayer(rearrange(x,'b (h w) c -> b c h w',h=H,w=W))
passfeat=rearrange(passfeat,'b c h w -> b (h w) c')
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)+passfeat
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LRT(nn.Module):
def __init__(self,
dim,
depth,
num_heads,
window_size=5,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.blocks = nn.ModuleList([
LocalRTBLOCK(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
def forward(self, x):
B,C,H,W=x.shape
x=rearrange(x,'b c h w -> b (h w) c')
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
x = blk(x, attn_mask)
x=rearrange(x,'b (h w) c -> b c h w',h=H,w=W)
return x
class downs(nn.Module):
def __init__(self):
super(downs, self).__init__()
self.down1=nn.Upsample(scale_factor=1/4,mode='bilinear',align_corners=False)
self.down=nn.Upsample(scale_factor=1/2,mode='bilinear',align_corners=False)
def forward(self,x):
with torch.no_grad():
x=self.down1(x)
x=(x>0.05).float()
x=self.down(x)
x=(x>0.05).float()
x=self.down(x)
x=(x>0.05).float()
return x
class DecBlock01(nn.Module):
def __init__(self, inc, midc, stride=1):
super(DecBlock01, self).__init__()
self.conv1 = nn.Conv2d(inc, midc, kernel_size=1, stride=1, padding=0, bias=True)
self.gn1=nn.GroupNorm(16,midc)
self.conv2 = nn.Conv2d(midc, midc, kernel_size=3, stride=1, padding=1, bias=True)
self.gn2=nn.GroupNorm(16,midc)
self.conv3=nn.Conv2d(midc,inc,kernel_size=1,stride=1,padding=0,bias=True)
self.relu = nn.LeakyReLU(0.1)
def forward(self,x):
x_=x
x = self.conv1(x)
x = self.gn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.gn2(x)
x = self.relu(x)
x = self.conv3(x)
x = x+x_
x = self.relu(x)
return x
class DecBlock00(nn.Module):
def __init__(self, inc, midc, stride=1):
super(DecBlock00, self).__init__()
self.conv1 = nn.Conv2d(inc, midc, kernel_size=1, stride=1, padding=0, bias=True)
self.gn1=nn.GroupNorm(16,midc)
self.conv2 = nn.Conv2d(midc, midc, kernel_size=3, stride=1, padding=1, bias=True)
self.gn2=nn.GroupNorm(16,midc)
self.conv3=nn.Conv2d(midc,inc,kernel_size=1,stride=1,padding=0,bias=True)
self.relu = nn.LeakyReLU(0.0)
def forward(self,x):
x_=x
x = self.conv1(x)
x = self.gn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.gn2(x)
x = self.relu(x)
x = self.conv3(x)
x = x+x_
x = self.relu(x)
return x
class DCAM_ADB_TRI(nn.Module):
def __init__(self):
super(DCAM_ADB_TRI, self).__init__()
self.backbone = resnet.ResNet50_MODTRI(os=16)
self.encoder = MSEncoder(output_stride=16)
self.pred1=nn.Sequential(nn.Conv2d(384,256,1,1,0),nn.ReLU(),nn.Conv2d(256,128,1,1,0),nn.ReLU(),nn.Dropout(0.2),nn.Conv2d(128,1,1,1,0))
self.emb=nn.Sequential(nn.Conv2d(3,32,3,1,1),nn.ReLU(),nn.Conv2d(32,128,1,1,0))
self.detail_emb=nn.Conv2d(512,256,3,2,1)
self.detail_conv=nn.Conv2d(256+384,128,1,1)
self.glb1=nn.Sequential(GRT(128,256,4,dropout=0.1),GRT(128,256,4,dropout=0.1))
self.loc1=nn.Sequential(nn.Conv2d(128+512,128,1,1,0),LRT(128,2,2,drop_path=0.1))
self.locfb1=nn.Conv2d(128,128,3,2,1)
self.m1=nn.Conv2d(256,128,1,1,0)
self.glb2=nn.Sequential(GRT(128,256,4,dropout=0.1),GRT(128,256,4,dropout=0.1))
self.loc2=nn.Sequential(nn.Conv2d(128+512,128,1,1,0),LRT(128,2,2,drop_path=0.1))
self.locfb2=nn.Conv2d(128,128,3,2,1)
self.m2=nn.Conv2d(256,256,1,1,0)
self.predg1=nn.Sequential(nn.Conv2d(128,128,1,1,0),nn.ReLU(),nn.Conv2d(128,1,1,1,0))
self.predg2=nn.Sequential(nn.Conv2d(128,128,1,1,0),nn.ReLU(),nn.Conv2d(128,1,1,1,0))
self.conv16=nn.Sequential(nn.Conv2d(256+1024,384,1,1,0),DecBlock01(384,192),DecBlock01(384,192))
self.conv8=nn.Sequential(nn.Conv2d(384+512,256,1,1,0),DecBlock00(256,128),DecBlock00(256,128))
self.conv4=nn.Sequential(nn.Conv2d(256+256,128,1,1,0),DecBlock00(128,64),DecBlock00(128,64))
self.conv2=nn.Sequential(nn.Conv2d(128+64,64,3,1,1,bias=True),nn.PReLU(64),nn.Conv2d(64,64,3,1,1,bias=True),nn.PReLU(64))
self.convo=nn.Sequential(nn.Conv2d(64+6+32,24,3,1,1,bias=True),nn.PReLU(24),nn.Conv2d(24,16,3,1,1,bias=True),nn.PReLU(16),nn.Conv2d(16,1,3,1,1,bias=True))
self.down=downs()
self.up=nn.Upsample(scale_factor=2,mode='bilinear',align_corners=False)
self.up8=nn.Upsample(scale_factor=8, mode='bilinear', align_corners=False)
self.up16=nn.Upsample(scale_factor=16, mode='bilinear', align_corners=False)
self.ft1=nn.Conv2d(1024,256,1,1,0)
self.ft2=nn.Conv2d(1024,256,1,1,0)
def forward(self, x,tri):
ins = torch.cat([x,tri],1)
dm=self.down(tri)
features, _ = self.backbone(ins, True)
ms = self.encoder(features[-1])
pred1=self.pred1(ms)
low_feat=self.detail_emb(features[-3])
feats=torch.cat([ms,low_feat],1)
feats=self.detail_conv(feats)
_,_,h,w=dm.shape
dm=self.emb(dm)
feats_=dm+feats
ft1=self.ft1(features[-2])
ft2=self.ft2(features[-2])
feats,_=self.glb1((feats_,ft1))
featsup=self.up(feats)
featsup=torch.cat([featsup,features[-3]],1)
featsup=self.loc1(featsup)
predg1=self.predg1(featsup)
feats=self.m1(torch.cat([feats,self.locfb1(featsup)],1) )
feats,_=self.glb2((feats,ft2))
featsup=self.up(feats)
featsup=torch.cat([featsup,features[-3]],1)
featsup=self.loc2(featsup)
predg2=self.predg2(featsup)
feats=self.m2(torch.cat([feats,self.locfb2(featsup)],1) )
feats=self.conv16(torch.cat([feats,features[-2]],1))
feats=self.up(feats)
feats=torch.cat([feats,features[-3]],1)
feats=self.conv8(feats)
feats=self.up(feats)
feats=torch.cat([feats,features[-4]],1)
feats=self.conv4(feats)
feats=self.up(feats)
feats=torch.cat([feats,features[-5]],1)
feats=self.conv2(feats)
feats=self.up(feats)
feats=torch.cat([feats,ins,features[-6]],1)
alpha=self.convo(feats)
pred1=self.up16(pred1)
predg1=self.up8(predg1)
predg2=self.up8(predg2)
alpha=torch.clamp(alpha,0,1)
return pred1,predg1,predg2,alpha