forked from hustvl/HAIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_open3d.py
240 lines (209 loc) · 8.75 KB
/
visualize_open3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import os, glob, argparse
import torch
from operator import itemgetter
import cv2
import open3d as o3d
import glob
COLOR_DETECTRON2 = np.array(
[
0.000, 0.447, 0.741,
0.850, 0.325, 0.098,
0.929, 0.694, 0.125,
0.494, 0.184, 0.556,
0.466, 0.674, 0.188,
0.301, 0.745, 0.933,
0.635, 0.078, 0.184,
# 0.300, 0.300, 0.300,
0.600, 0.600, 0.600,
1.000, 0.000, 0.000,
1.000, 0.500, 0.000,
0.749, 0.749, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 1.000,
0.667, 0.000, 1.000,
0.333, 0.333, 0.000,
0.333, 0.667, 0.000,
0.333, 1.000, 0.000,
0.667, 0.333, 0.000,
0.667, 0.667, 0.000,
0.667, 1.000, 0.000,
1.000, 0.333, 0.000,
1.000, 0.667, 0.000,
1.000, 1.000, 0.000,
0.000, 0.333, 0.500,
0.000, 0.667, 0.500,
0.000, 1.000, 0.500,
0.333, 0.000, 0.500,
0.333, 0.333, 0.500,
0.333, 0.667, 0.500,
0.333, 1.000, 0.500,
0.667, 0.000, 0.500,
0.667, 0.333, 0.500,
0.667, 0.667, 0.500,
0.667, 1.000, 0.500,
1.000, 0.000, 0.500,
1.000, 0.333, 0.500,
1.000, 0.667, 0.500,
1.000, 1.000, 0.500,
0.000, 0.333, 1.000,
0.000, 0.667, 1.000,
0.000, 1.000, 1.000,
0.333, 0.000, 1.000,
0.333, 0.333, 1.000,
0.333, 0.667, 1.000,
0.333, 1.000, 1.000,
0.667, 0.000, 1.000,
0.667, 0.333, 1.000,
0.667, 0.667, 1.000,
0.667, 1.000, 1.000,
1.000, 0.000, 1.000,
1.000, 0.333, 1.000,
1.000, 0.667, 1.000,
# 0.333, 0.000, 0.000,
0.500, 0.000, 0.000,
0.667, 0.000, 0.000,
0.833, 0.000, 0.000,
1.000, 0.000, 0.000,
0.000, 0.167, 0.000,
# 0.000, 0.333, 0.000,
0.000, 0.500, 0.000,
0.000, 0.667, 0.000,
0.000, 0.833, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 0.167,
# 0.000, 0.000, 0.333,
0.000, 0.000, 0.500,
0.000, 0.000, 0.667,
0.000, 0.000, 0.833,
0.000, 0.000, 1.000,
# 0.000, 0.000, 0.000,
0.143, 0.143, 0.143,
0.857, 0.857, 0.857,
# 1.000, 1.000, 1.000
]).astype(np.float32).reshape(-1, 3) * 255
SEMANTIC_IDXS = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
SEMANTIC_NAMES = np.array(['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter',
'desk', 'curtain', 'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'])
CLASS_COLOR = {
'unannotated': [0, 0, 0],
'floor': [143, 223, 142],
'wall': [171, 198, 230],
'cabinet': [0, 120, 177],
'bed': [255, 188, 126],
'chair': [189, 189, 57],
'sofa': [144, 86, 76],
'table': [255, 152, 153],
'door': [222, 40, 47],
'window': [197, 176, 212],
'bookshelf': [150, 103, 185],
'picture': [200, 156, 149],
'counter': [0, 190, 206],
'desk': [252, 183, 210],
'curtain': [219, 219, 146],
'refridgerator': [255, 127, 43],
'bathtub': [234, 119, 192],
'shower curtain': [150, 218, 228],
'toilet': [0, 160, 55],
'sink': [110, 128, 143],
'otherfurniture': [80, 83, 160]
}
SEMANTIC_IDX2NAME = {1: 'wall', 2: 'floor', 3: 'cabinet', 4: 'bed', 5: 'chair', 6: 'sofa', 7: 'table', 8: 'door', 9: 'window', 10: 'bookshelf', 11: 'picture',
12: 'counter', 14: 'desk', 16: 'curtain', 24: 'refridgerator', 28: 'shower curtain', 33: 'toilet', 34: 'sink', 36: 'bathtub', 39: 'otherfurniture'}
def get_coords_color(opt):
input_file = os.path.join(opt.data_path, opt.data_split, opt.room_name + '_inst_nostuff.pth')
assert os.path.isfile(input_file), 'File not exist - {}.'.format(input_file)
if opt.data_split == 'test':
xyz, rgb = torch.load(input_file)
else:
xyz, rgb, label, inst_label = torch.load(input_file)
rgb = (rgb + 1) * 127.5
if (opt.task == 'semantic_gt'):
assert opt.data_split != 'test'
label = label.astype(np.int)
label_rgb = np.zeros(rgb.shape)
label_rgb[label >= 0] = np.array(itemgetter(*SEMANTIC_NAMES[label[label >= 0]])(CLASS_COLOR))
rgb = label_rgb
elif (opt.task == 'semantic_pred'):
assert opt.data_split != 'train'
semantic_file = os.path.join(opt.prediction_path, opt.data_split, 'semantic', opt.room_name + '.npy')
assert os.path.isfile(semantic_file), 'No semantic result - {}.'.format(semantic_file)
label_pred = np.load(semantic_file).astype(np.int) # 0~19
label_pred_rgb = np.array(itemgetter(*SEMANTIC_NAMES[label_pred])(CLASS_COLOR))
rgb = label_pred_rgb
elif (opt.task == 'offset_semantic_pred'):
assert opt.data_split != 'train'
semantic_file = os.path.join(opt.prediction_path, opt.data_split, 'semantic', opt.room_name + '.npy')
assert os.path.isfile(semantic_file), 'No semantic result - {}.'.format(semantic_file)
label_pred = np.load(semantic_file).astype(np.int) # 0~19
label_pred_rgb = np.array(itemgetter(*SEMANTIC_NAMES[label_pred])(CLASS_COLOR))
rgb = label_pred_rgb
offset_file = os.path.join(opt.prediction_path, opt.data_split, 'coords_offsets', opt.room_name + '.npy')
assert os.path.isfile(offset_file), 'No offset result - {}.'.format(offset_file)
offset_coords = np.load(offset_file)
xyz = offset_coords[:, :3] + offset_coords[:, 3:]
# same color order according to instance pointnum
elif (opt.task == 'instance_gt'):
assert opt.data_split != 'test'
inst_label = inst_label.astype(np.int)
print("Instance number: {}".format(inst_label.max() + 1))
inst_label_rgb = np.zeros(rgb.shape)
object_idx = (inst_label >= 0)
ins_num = inst_label.max() + 1
ins_pointnum = np.zeros(ins_num)
for _ins_id in range(ins_num):
ins_pointnum[_ins_id] = (inst_label == _ins_id).sum()
sort_idx = np.argsort(ins_pointnum)[::-1]
for _sort_id in range(ins_num):
inst_label_rgb[inst_label == sort_idx[_sort_id] ] = COLOR_DETECTRON2[_sort_id % len(COLOR_DETECTRON2)]
rgb = inst_label_rgb
# same color order according to instance pointnum
elif (opt.task == 'instance_pred'):
assert opt.data_split != 'train'
instance_file = os.path.join(opt.prediction_path, opt.data_split, opt.room_name + '.txt')
assert os.path.isfile(instance_file), 'No instance result - {}.'.format(instance_file)
f = open(instance_file, 'r')
masks = f.readlines()
masks = [mask.rstrip().split() for mask in masks]
inst_label_pred_rgb = np.zeros(rgb.shape) # np.ones(rgb.shape) * 255 #
ins_num = len(masks)
ins_pointnum = np.zeros(ins_num)
inst_label = -100 * np.ones(rgb.shape[0]).astype(np.int)
for i in range(len(masks) - 1, -1, -1):
mask_path = os.path.join(opt.prediction_path, opt.data_split, masks[i][0])
assert os.path.isfile(mask_path), mask_path
if (float(masks[i][2]) < 0.09):
continue
mask = np.loadtxt(mask_path).astype(np.int)
print('{} {}: {} pointnum: {}'.format(i, masks[i], SEMANTIC_IDX2NAME[int(masks[i][1])], mask.sum()))
ins_pointnum[i] = mask.sum()
inst_label[mask == 1] = i
sort_idx = np.argsort(ins_pointnum)[::-1]
for _sort_id in range(ins_num):
inst_label_pred_rgb[inst_label == sort_idx[_sort_id] ] = COLOR_DETECTRON2[_sort_id % len(COLOR_DETECTRON2)]
rgb = inst_label_pred_rgb
if opt.data_split != 'test':
sem_valid = (label != -100)
xyz = xyz[sem_valid]
rgb = rgb[sem_valid]
return xyz, rgb
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', help='path to the dataset files')
parser.add_argument('--prediction_path', help='path to the prediction results')
parser.add_argument('--data_split', help='train / val / test', default='val')
parser.add_argument('--room_name', help='room_name', default='scene0146_01')
parser.add_argument('--task', help='input / semantic_gt / semantic_pred / offset_semantic_pred / instance_gt / instance_pred', default='input')
opt = parser.parse_args()
xyz, rgb = get_coords_color(opt)
points = xyz[:, :3]
colors = rgb / 255
pc = o3d.geometry.PointCloud()
pc.points = o3d.utility.Vector3dVector(points)
pc.colors = o3d.utility.Vector3dVector(colors)
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(pc)
vis.get_render_option().point_size = 1.5
vis.run()
vis.destroy_window()