-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
199 lines (160 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import time
import sys
import torch
import logging
import json
import numpy as np
import random
import pickle
import torch.distributed as dist
from torch.utils.data import DataLoader, RandomSampler
from src.options import Options
from src import data, beir_utils, slurm, dist_utils, utils
from src import moco, inbatch, relevance_aware
logger = logging.getLogger(__name__)
def train(opt, model, optimizer, scheduler, step):
run_stats = utils.WeightedAvgStats()
tb_logger = utils.init_tb_logger(opt.output_dir)
logger.info("Data loading")
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
tokenizer = model.module.tokenizer
else:
tokenizer = model.tokenizer
if opt.crop_method == "4_pair":
collator = data.Collator_4_pair(opt=opt)
collator = data.Collator(opt=opt)
train_dataset = data.load_data(opt, tokenizer)
logger.warning(f"Data loading finished for rank {dist_utils.get_rank()}")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=opt.per_gpu_batch_size,
drop_last=True,
num_workers=opt.num_workers,
collate_fn=collator,
)
epoch = 1
model.train()
while step < opt.total_steps:
train_dataset.generate_offset()
logger.info(f"Start epoch {epoch}")
for i, batch in enumerate(train_dataloader):
step += 1
batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()}
train_loss, iter_stats = model(**batch, stats_prefix="train")
train_loss.backward()
optimizer.step()
scheduler.step()
model.zero_grad()
run_stats.update(iter_stats)
if step % opt.log_freq == 0:
log = f"{step} / {opt.total_steps}"
for k, v in sorted(run_stats.average_stats.items()):
log += f" | {k}: {v:.3f}"
if tb_logger:
tb_logger.add_scalar(k, v, step)
log += f" | lr: {scheduler.get_last_lr()[0]:0.3g}"
log += f" | Memory: {torch.cuda.max_memory_allocated()//1e9} GiB"
logger.info(log)
run_stats.reset()
if step % opt.eval_freq == 0:
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
encoder = model.module.get_encoder()
else:
encoder = model.get_encoder()
eval_model(
opt, query_encoder=encoder, doc_encoder=encoder, tokenizer=tokenizer, tb_logger=tb_logger, step=step
)
if dist_utils.is_main():
utils.save(model, optimizer, scheduler, step, opt, opt.output_dir, f"lastlog")
model.train()
if dist_utils.is_main() and step % opt.save_freq == 0:
utils.save(model, optimizer, scheduler, step, opt, opt.output_dir, f"step-{step}")
if step > opt.total_steps:
break
epoch += 1
def eval_model(opt, query_encoder, doc_encoder, tokenizer, tb_logger, step):
for datasetname in opt.eval_datasets:
metrics = beir_utils.evaluate_model(
query_encoder,
doc_encoder,
tokenizer,
dataset=datasetname,
batch_size=opt.per_gpu_eval_batch_size,
norm_doc=opt.norm_doc,
norm_query=opt.norm_query,
beir_dir=opt.eval_datasets_dir,
score_function=opt.score_function,
lower_case=opt.lower_case,
normalize_text=opt.eval_normalize_text,
)
message = []
if dist_utils.is_main():
for metric in ["NDCG@10", "Recall@10", "Recall@100"]:
message.append(f"{datasetname}/{metric}: {metrics[metric]:.2f}")
if tb_logger is not None:
tb_logger.add_scalar(f"{datasetname}/{metric}", metrics[metric], step)
logger.info(" | ".join(message))
if __name__ == "__main__":
logger.info("Start")
options = Options()
opt = options.parse()
torch.manual_seed(opt.seed)
slurm.init_distributed_mode(opt)
slurm.init_signal_handler()
directory_exists = os.path.isdir(opt.output_dir)
if dist.is_initialized():
dist.barrier()
os.makedirs(opt.output_dir, exist_ok=True)
if not directory_exists and dist_utils.is_main():
options.print_options(opt)
if dist.is_initialized():
dist.barrier()
utils.init_logger(opt)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if opt.contrastive_mode == "moco":
model_class = moco.MoCo
elif opt.contrastive_mode == "inbatch":
model_class = inbatch.InBatch
elif opt.contrastive_mode == "relevance_aware":
model_class = relevance_aware.RelevanceAware
else:
raise ValueError(f"contrastive mode: {opt.contrastive_mode} not recognised")
if not directory_exists and opt.model_path == "none":
model = model_class(opt)
model = model.cuda()
optimizer, scheduler = utils.set_optim(opt, model)
step = 0
elif directory_exists:
model_path = os.path.join(opt.output_dir, "checkpoint", "latest")
model, optimizer, scheduler, opt_checkpoint, step = utils.load(
model_class,
model_path,
opt,
reset_params=False,
)
logger.info(f"Model loaded from {opt.output_dir}")
else:
model, optimizer, scheduler, opt_checkpoint, step = utils.load(
model_class,
opt.model_path,
opt,
reset_params=False if opt.continue_training else True,
)
if not opt.continue_training:
step = 0
logger.info(f"Model loaded from {opt.model_path}")
logger.info(utils.get_parameters(model))
if dist.is_initialized():
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
find_unused_parameters=False,
)
dist.barrier()
logger.info("Start training")
train(opt, model, optimizer, scheduler, step)