-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
254 lines (226 loc) · 7.33 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import torch
import numpy as np
from sklearn.metrics import adjusted_rand_score
from scipy.optimize import linear_sum_assignment
import torch.nn.functional as F
import torch.nn as nn
from functools import partial
from piq import ssim
from piq import psnr
import lpips
def average_ari(masks, masks_gt, fg_only=False, reduction='mean'):
r'''
Input:
masks: (B, K, N)
masks_gt: (B, N)
'''
ari = []
masks = masks.argmax(dim=1)
B = masks.shape[0]
for i in range(B):
m = masks[i].cpu().numpy()
m_gt = masks_gt[i].cpu().numpy()
if fg_only:
m = m[np.where(m_gt > 0)]
m_gt = m_gt[np.where(m_gt > 0)]
score = adjusted_rand_score(m, m_gt)
ari.append(score)
if reduction == 'mean':
return torch.Tensor(ari).mean()
else:
return torch.Tensor(ari)
def imask2bmask(imasks, ignore_index=None):
r"""Convert index mask to binary mask.
Args:
imask: index mask, shape (B, N)
Returns:
bmasks: # a list of (K, N), len = B
"""
B, N = imasks.shape
bmasks = []
for i in range(B):
imask = imasks[i:i+1] # (1, N)
classes = imask.unique().tolist()
if ignore_index in classes:
classes.remove(ignore_index)
bmask = [imask == c for c in classes]
bmask = torch.cat(bmask, dim=0) # (K, N)
bmasks.append(bmask.float())
# can't use torch.stack because of different K
return bmasks
def mean_best_overlap(masks, masks_gt, fg_only=False, reduction='mean'):
r"""Compute the best overlap between predicted and ground truth masks.
Args:
masks: predicted masks, shape (B, K, N), binary N = H*W
masks_gt: ground truth masks, shape (B, N), index
"""
B = masks.shape[0]
ignore_index = None
if fg_only:
ignore_index = 0
bmasks_gt = imask2bmask(masks_gt, ignore_index=ignore_index) # a list of (K, N), len = B
mean_best_overlap = []
mOR = []
for i in range(B):
mask = masks[i].unsqueeze(0) > 0.5 # (1, K, N)
mask_gt = bmasks_gt[i].unsqueeze(1) > 0.5 # (K_gt, 1, N)
# Compute IOU
eps = 1e-8
intersection = (mask * mask_gt).sum(-1)
union = (mask + mask_gt).sum(-1)
iou = intersection / (union + eps) # (K_gt, K)
# Compute best overlap
best_overlap, _ = torch.max(iou, dim=1)
# Compute mean best overlap
mean_best_overlap.append(best_overlap.mean())
mOR.append((best_overlap > 0.5).float().mean())
if reduction == 'mean':
return torch.stack(mean_best_overlap).mean()
# , torch.stack(mOR).mean()
else:
return torch.stack(mean_best_overlap)
# , torch.stack(mOR)
def iou_loss(pred, target):
"""
Compute the iou loss: 1 - iou
pred: [K, N]
targets: [Kt, N]
"""
eps = 1e-8
pred = pred > 0.5 # [K, N]
target = target > 0.5
intersection = (pred[:, None] & target[None]).sum(-1).float() # [K, Kt]
union = (pred[:, None] | target[None]).sum(-1).float() + eps # [K, Kt]
loss = 1 - (intersection / union) # [K, Kt]
return loss # [K, Kt]
iou_loss_jit = torch.jit.script(iou_loss)
class Matcher():
@torch.no_grad()
def forward(self, pred, target):
r"""
pred: [K, N]
targets: [Kt, N]
"""
loss = iou_loss_jit(pred, target)
row_ind, col_ind = linear_sum_assignment(loss.cpu().numpy())
return torch.as_tensor(row_ind, dtype=torch.int64), torch.as_tensor(col_ind, dtype=torch.int64)
@torch.no_grad()
def batch_forward(self, pred, targets):
"""
pred: [B, K, N]
targets: list of B x [Kt, N] Kt can be different for each target
"""
indices = []
for i in range(pred.shape[0]):
indices.append(self.forward(pred[i], targets[i]))
return indices
@torch.no_grad()
def compute_iou(pred, target):
"""
Input:
x: [K, N]
y: [K, N]
Return:
iou: [K, N]
"""
eps = 1e-8
pred = pred > 0.5 # [K, N]
target = target > 0.5
intersection = (pred & target).sum(-1).float()
union = (pred | target).sum(-1).float() + eps # [K]
return (intersection / union).mean()
compute_iou_jit = torch.jit.script(compute_iou)
def matchedIoU(preds, targets, matcher, fg_only=False, reduction="mean"):
r"""
Input:
pred: [B, K, N]
targets: [B, N]
Return:
IoU: [1] or [B]
"""
if preds.dim() == 2: # [K, N]
preds = preds.unsqueeze(0)
targets = targets.unsqueeze(0)
ious = []
B = preds.shape[0]
ignore_index = None
if fg_only:
ignore_index = 0
targets = imask2bmask(targets, ignore_index) # a list of [K1, N], len = B
for i in range(B):
tgt = targets[i]
pred = preds[i] # [K, N]
src_idx, tgt_idx = matcher.forward(pred, tgt)
src_pred = pred[src_idx] # [K1, N]
tgt_mask = tgt[tgt_idx] # [K1, N]
ious.append(compute_iou_jit(src_pred, tgt_mask))
ious = torch.stack(ious)
if reduction == "mean":
return ious.mean()
else:
return ious
matcher = Matcher()
SEGMETRICS = {
"hiou": partial(matchedIoU, matcher=matcher), # hungarian matched iou
"hiou_fg": partial(matchedIoU, fg_only=True, matcher=matcher),
"mbo": mean_best_overlap, # mean best overlap
"mbo_fg": partial(mean_best_overlap, fg_only=True),
"ari": average_ari,
"ari_fg": partial(average_ari, fg_only=True),
}
class SegMetrics(nn.Module):
def __init__(self, metrics=["hiou", "ari", "ari_fg"]):
super().__init__()
self.metrics = {}
for m in metrics:
self.metrics[m] = SEGMETRICS[m]
def forward(self, preds, targets):
r"""
Input:
preds: [B, N, K]
targets: [B, N]
Return:
metrics: dict of metrics
"""
metrics = {}
valid = targets.sum(-1) > 0
preds = preds[valid]
targets = targets[valid]
preds = F.one_hot(preds.argmax(dim=-1), num_classes=preds.shape[-1]).permute(0, 2, 1).float() # [B, K, N]
for k, v in self.metrics.items():
if valid.sum() > 0:
metrics[k] = v(preds, targets)
else:
metrics[k] = torch.tensor(1).to(preds.device)
return metrics
def compute(self, preds, targets, metric='hiou'):
return self.metrics[metric](preds, targets)
def metrics_name(self):
return list(self.metrics.keys())
class ReconMetrics(nn.Module):
def __init__(self, lpips_net='vgg'):
super().__init__()
self.metrics = {
"ssim": ssim,
"psnr": psnr,
"lpips": lpips.LPIPS(net=lpips_net),
}
def forward(self, preds, targets):
r"""
Input:
preds: [B, C, H, W]
targets: [B, C, H, W]
Return:
metrics: dict of metrics
"""
metrics = {}
for k, v in self.metrics.items():
metrics[k] = v(preds, targets).mean()
return metrics
def compute(self, preds, targets, metric='psnr'):
return self.metrics[metric](preds, targets)
def metrics_name(self):
return list(self.metrics.keys())
def set_divice(self, device):
self.metrics["lpips"].to(device)