-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestingCombinedSites.R
448 lines (386 loc) · 16.9 KB
/
TestingCombinedSites.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Overall Correlation and Temporal Correlation #
##### Set up and Data #####
library(dplR)
library(dplyr)
library(gtools)
library(ggplot2)
library(patchwork)
setwd("C:/Users/mitch/Google Drive/PHD/Thesis Research/Landsat Time-Series/Validate/Change Validation/Dendrochronology")
#Laptop
### Neff function ###
calc.neff <- function(x,y){
x.ar1 = acf(x,plot=F)
sig.lvl = qnorm((1 + 0.95)/2)/sqrt(x.ar1$n.used)
x.ar1 = x.ar1$acf[2,1,1]
x.ar1 = ifelse(x.ar1 < sig.lvl, 0, x.ar1)
y.ar1 = acf(y,plot=F)
sig.lvl = qnorm((1 + 0.9)/2)/sqrt(y.ar1$n.used)
y.ar1 = y.ar1$acf[2,1,1]
y.ar1 = ifelse(y.ar1 < sig.lvl, 0, y.ar1)
n <- length(x)
neff <- round(n*(1-x.ar1*y.ar1)/(1+x.ar1*y.ar1)) # originally floor()
neff
}
# Finds first order autocorrelation, finds autocorrelation value at edge of significance
# If autocorrelation < edge autocorrelation then no penalty
# Else drop effective sample size based on size of autocorrelation (x and y)
### Adjusted cor.test function ###
my.cor.test <- function (x, y, alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"), exact = NULL,
conf.level = 0.95, n = length(x), ...)
{
alternative <- match.arg(alternative)
method <- match.arg(method)
DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
if (length(x) != length(y))
stop("'x' and 'y' must have the same length")
OK <- complete.cases(x, y)
x <- x[OK]
y <- y[OK]
# n <- length(x), added n as an input to allow for using neff
PVAL <- NULL
NVAL <- 0
conf.int <- FALSE
if (method == "pearson") {
if (n < 3)
stop("not enough finite observations")
method <- "Pearson's product-moment correlation"
names(NVAL) <- "correlation"
r <- cor(x, y)
df <- n - 2
ESTIMATE <- c(cor = r)
PARAMETER <- c(df = df)
STATISTIC <- c(t = sqrt(df) * r/sqrt(1 - r^2))
p <- pt(STATISTIC, df)
if (n > 3) {
if (!missing(conf.level) && (length(conf.level) !=
1 || !is.finite(conf.level) || conf.level < 0 ||
conf.level > 1))
stop("'conf.level' must be a single number between 0 and 1")
conf.int <- TRUE
z <- atanh(r)
sigma <- 1/sqrt(n - 3)
cint <- switch(alternative, less = c(-Inf, z + sigma *
qnorm(conf.level)), greater = c(z - sigma * qnorm(conf.level),
Inf), two.sided = z + c(-1, 1) * sigma * qnorm((1 +
conf.level)/2))
cint <- tanh(cint)
attr(cint, "conf.level") <- conf.level
}
}
else {
if (n < 2)
stop("not enough finite observations")
PARAMETER <- NULL
TIES <- (min(length(unique(x)), length(unique(y))) <
n)
if (method == "kendall") {
method <- "Kendall's rank correlation tau"
names(NVAL) <- "tau"
r <- cor(x, y, method = "kendall")
ESTIMATE <- c(tau = r)
if (!is.finite(ESTIMATE)) {
ESTIMATE[] <- NA
STATISTIC <- c(T = NA)
PVAL <- NA
}
else {
if (is.null(exact))
exact <- (n < 50)
if (exact && !TIES) {
q <- round((r + 1) * n * (n - 1)/4)
pkendall <- function(q, n) {
.C("pkendall", length(q), p = as.double(q),
as.integer(n), PACKAGE = "stats")$p
}
PVAL <- switch(alternative, two.sided = {
if (q > n * (n - 1)/4)
p <- 1 - pkendall(q - 1, n)
else p <- pkendall(q, n)
min(2 * p, 1)
}, greater = 1 - pkendall(q - 1, n), less = pkendall(q,
n))
STATISTIC <- c(T = q)
}
else {
xties <- table(x[duplicated(x)]) + 1
yties <- table(y[duplicated(y)]) + 1
T0 <- n * (n - 1)/2
T1 <- sum(xties * (xties - 1))/2
T2 <- sum(yties * (yties - 1))/2
S <- r * sqrt((T0 - T1) * (T0 - T2))
v0 <- n * (n - 1) * (2 * n + 5)
vt <- sum(xties * (xties - 1) * (2 * xties +
5))
vu <- sum(yties * (yties - 1) * (2 * yties +
5))
v1 <- sum(xties * (xties - 1)) * sum(yties *
(yties - 1))
v2 <- sum(xties * (xties - 1) * (xties - 2)) *
sum(yties * (yties - 1) * (yties - 2))
var_S <- (v0 - vt - vu)/18 + v1/(2 * n * (n -
1)) + v2/(9 * n * (n - 1) * (n - 2))
STATISTIC <- c(z = S/sqrt(var_S))
p <- pnorm(STATISTIC)
if (exact && TIES)
warning("Cannot compute exact p-value with ties")
}
}
}
else {
method <- "Spearman's rank correlation rho"
if (is.null(exact))
exact <- TRUE
names(NVAL) <- "rho"
r <- cor(rank(x), rank(y))
ESTIMATE <- c(rho = r)
if (!is.finite(ESTIMATE)) {
ESTIMATE[] <- NA
STATISTIC <- c(S = NA)
PVAL <- NA
}
else {
pspearman <- function(q, n, lower.tail = TRUE) {
if (n <= 1290 && exact)
.C("prho", as.integer(n), as.double(round(q) +
lower.tail), p = double(1), integer(1),
as.logical(lower.tail), PACKAGE = "stats")$p
else {
r <- 1 - 6 * q/(n * (n^2 - 1))
pt(r/sqrt((1 - r^2)/(n - 2)), df = n - 2,
lower.tail = !lower.tail)
}
}
q <- (n^3 - n) * (1 - r)/6
STATISTIC <- c(S = q)
if (TIES && exact) {
exact <- FALSE
warning("Cannot compute exact p-values with ties")
}
PVAL <- switch(alternative, two.sided = {
p <- if (q > (n^3 - n)/6)
pspearman(q, n, lower.tail = FALSE)
else pspearman(q, n, lower.tail = TRUE)
min(2 * p, 1)
}, greater = pspearman(q, n, lower.tail = TRUE),
less = pspearman(q, n, lower.tail = FALSE))
}
}
}
if (is.null(PVAL))
PVAL <- switch(alternative, less = p, greater = 1 - p,
two.sided = 2 * min(p, 1 - p))
RVAL <- list(statistic = STATISTIC, parameter = PARAMETER,
p.value = as.numeric(PVAL), estimate = ESTIMATE, null.value = NVAL,
alternative = alternative, method = method, data.name = DNAME)
if (conf.int)
RVAL <- c(RVAL, list(conf.int = cint))
class(RVAL) <- "htest"
RVAL
}
# Just like cor.test but can replace n with neff
# Smoothing spline length
nyrs = 10
##### 02Que/Ace/Car #####
# F15Que
rwl.F15Que = read.rwl("Ring Width Chronologies/F15/F15_Quercus_2.rwl")
rwl.report(rwl.F15Que)
rwl.F15Que.ids = read.ids(rwl.F15Que, stc = c(4, 2, 1))
yr.F15Que = time(rwl.F15Que)
rwl.F15Que.mne = detrend(rwl.F15Que, method = "ModNegExp")
rwl.F15Que.mne.sss = sss(rwl.F15Que.mne, rwl.F15Que.ids)
cut.F15Que.mne = max(yr.F15Que[rwl.F15Que.mne.sss < 0.85])
yr.cut.F15Que.mne = yr.F15Que[yr.F15Que > cut.F15Que.mne]
rwl.F15Que.mne.crn = chron(detrend(rwl.F15Que[yr.F15Que > cut.F15Que.mne,],
method = "ModNegExp"))
plot(rwl.F15Que.mne.crn, add.spline = TRUE, nyrs = 10)
# F15Ace
rwl.F15Ace = read.rwl("Ring Width Chronologies/F15/F15_Acer_1.rwl")
rwl.report(rwl.F15Ace)
rwl.F15Ace.ids = read.ids(rwl.F15Ace, stc = c(4, 2, 1))
yr.F15Ace = time(rwl.F15Ace)
rwl.F15Ace.mne = detrend(rwl.F15Ace, method = "ModNegExp")
rwl.F15Ace.mne.sss = sss(rwl.F15Ace.mne, rwl.F15Ace.ids)
cut.F15Ace.mne = max(yr.F15Ace[rwl.F15Ace.mne.sss < 0.85])
yr.cut.F15Ace.mne = yr.F15Ace[yr.F15Ace > cut.F15Ace.mne]
rwl.F15Ace.mne.crn = chron(detrend(rwl.F15Ace[yr.F15Ace > cut.F15Ace.mne,],
method = "ModNegExp"))
plot(rwl.F15Ace.mne.crn, add.spline = TRUE, nyrs = 10)
# F15Car
rwl.F15Car = read.rwl("Ring Width Chronologies/F15/F15_Carya_1.rwl")
rwl.report(rwl.F15Car)
rwl.F15Car.ids = read.ids(rwl.F15Car, stc = c(4, 2, 1))
yr.F15Car = time(rwl.F15Car)
rwl.F15Car.mne = detrend(rwl.F15Car, method = "ModNegExp")
rwl.F15Car.mne.sss = sss(rwl.F15Car.mne, rwl.F15Car.ids)
cut.F15Car.mne = max(yr.F15Car[rwl.F15Car.mne.sss < 0.85])
yr.cut.F15Car.mne = yr.F15Car[yr.F15Car > cut.F15Car.mne]
rwl.F15Car.mne.crn = chron(detrend(rwl.F15Car[yr.F15Car > cut.F15Car.mne,],
method = "ModNegExp"))
plot(rwl.F15Car.mne.crn, add.spline = TRUE, nyrs = 10)
# F15
lts.F15 = read.csv("Ring Width Chronologies/F15/DetrendingLandsat/F15_Landsat_1.csv",
row.names = 1)
plot(rownames(lts.F15), lts.F15$Avg_CC_Median, ylab = "Landsat-derived %CC", xlab = "")
lines(rownames(lts.F15), lts.F15$Avg_CC_Fitted)
### Merge into one time-series with weight based on number of cores through time ###
f15tbl = data.frame(matrix(nrow = nrow(rwl.F15Que.mne.crn), ncol = 8)) # nrow of shortest chronology
colnames(f15tbl) = c("year", "rwi_que", "rwi_ace","rwi_car", "ss_que", "ss_ace", "ss_car",
"rwi_combined")
f15tbl$year = 1909:2018
f15tbl$rwi_que = rwl.F15Que.mne.crn$xxxstd
f15tbl$ss_que = rwl.F15Que.mne.crn$samp.depth
f15tbl$rwi_ace = rwl.F15Ace.mne.crn$xxxstd[8:117]
f15tbl$ss_ace = rwl.F15Ace.mne.crn$samp.depth[8:117]
f15tbl$rwi_car = rwl.F15Car.mne.crn$xxxstd[9:118]
f15tbl$ss_car = rwl.F15Car.mne.crn$samp.depth[9:118]
for(i in 1:nrow(f15tbl)) {
f15tbl[i,8] = weighted.mean(as.numeric(f15tbl[i,2:4]), f15tbl[i,5:7])
}
plot(f15tbl$year, f15tbl$rwi_combined, type = "l")
# Calc Neff and Cor.test
F15comb.cor = my.cor.test(f15tbl$rwi_combined[64:110], lts.F15$Avg_CC_Median, alternative = "greater",
method = "pearson", n = calc.neff(f15tbl$rwi_combined[64:110], lts.F15$Avg_CC_Median))
F15comb.cor
#####
##### 03Ace/Que #####
# M06Ace
rwl.M06Ace = read.rwl("Ring Width Chronologies/M06/M06_Acer_1.rwl")
rwl.report(rwl.M06Ace)
rwl.M06Ace.ids = read.ids(rwl.M06Ace, stc = c(4, 2, 1))
yr.M06Ace = time(rwl.M06Ace)
rwl.M06Ace.mne = detrend(rwl.M06Ace, method = "ModNegExp")
rwl.M06Ace.mne.sss = sss(rwl.M06Ace.mne, rwl.M06Ace.ids)
cut.M06Ace.mne = max(yr.M06Ace[rwl.M06Ace.mne.sss < 0.85])
yr.cut.M06Ace.mne = yr.M06Ace[yr.M06Ace > cut.M06Ace.mne]
rwl.M06Ace.mne.crn = chron(detrend(rwl.M06Ace[yr.M06Ace > cut.M06Ace.mne,],
method = "ModNegExp"))
plot(rwl.M06Ace.mne.crn, add.spline = TRUE, nyrs = 10)
# M06Que
rwl.M06Que = read.rwl("Ring Width Chronologies/M06/M06_Quercus_1.rwl")
rwl.report(rwl.M06Que)
rwl.M06Que.ids = read.ids(rwl.M06Que, stc = c(4, 2, 1))
yr.M06Que = time(rwl.M06Que)
rwl.M06Que.mne = detrend(rwl.M06Que, method = "ModNegExp")
rwl.M06Que.mne.sss = sss(rwl.M06Que.mne, rwl.M06Que.ids)
cut.M06Que.mne = max(yr.M06Que[rwl.M06Que.mne.sss < 0.85])
yr.cut.M06Que.mne = yr.M06Que[yr.M06Que > cut.M06Que.mne]
rwl.M06Que.mne.crn = chron(detrend(rwl.M06Que[yr.M06Que > cut.M06Que.mne,],
method = "ModNegExp"))
plot(rwl.M06Que.mne.crn, add.spline = TRUE, nyrs = 10)
# M06
lts.M06 = read.csv("Ring Width Chronologies/M06/DetrendingLandsat/M06_Landsat_1.csv",
row.names = 1)
plot(rownames(lts.M06), lts.M06$Avg_CC_Median, ylab = "Landsat-derived %CC", xlab = "")
lines(rownames(lts.M06), lts.M06$Avg_CC_Fitted)
### Merge into one time-series with weight based on number of cores through time ###
m06tbl = data.frame(matrix(nrow = nrow(rwl.M06Que.mne.crn), ncol = 6)) # nrow of shortest chronology
colnames(m06tbl) = c("year", "rwi_ace", "rwi_que", "ss_ace", "ss_que", "rwi_combined")
m06tbl$year = 1901:2018
m06tbl$rwi_ace = rwl.M06Ace.mne.crn$xxxstd[3:120]
m06tbl$ss_ace = rwl.M06Ace.mne.crn$samp.depth[3:120]
m06tbl$rwi_que = rwl.M06Que.mne.crn$xxxstd
m06tbl$ss_que = rwl.M06Que.mne.crn$samp.depth
for(i in 1:nrow(m06tbl)) {
m06tbl[i,6] = weighted.mean(as.numeric(m06tbl[i,2:3]), m06tbl[i,4:5])
}
plot(m06tbl$year, m06tbl$rwi_combined, type = "l")
# Calc Neff and Cor.test
M06comb.cor = my.cor.test(m06tbl$rwi_combined[72:118], lts.M06$Avg_CC_Median, alternative = "greater",
method = "pearson", n = calc.neff(m06tbl$rwi_combined[72:118], lts.M06$Avg_CC_Median))
M06comb.cor
#####
##### 10Thu/Dec #####
# M26Thu
rwl.M26Thu = read.rwl("Ring Width Chronologies/M26/M26_Thuja_1.rwl")
rwl.report(rwl.M26Thu)
rwl.M26Thu.ids = read.ids(rwl.M26Thu, stc = c(4, 2, 1))
yr.M26Thu = time(rwl.M26Thu)
rwl.M26Thu.mne = detrend(rwl.M26Thu, method = "ModNegExp")
rwl.M26Thu.mne.sss = sss(rwl.M26Thu.mne, rwl.M26Thu.ids)
cut.M26Thu.mne = max(yr.M26Thu[rwl.M26Thu.mne.sss < 0.85])
yr.cut.M26Thu.mne = yr.M26Thu[yr.M26Thu > cut.M26Thu.mne]
rwl.M26Thu.mne.crn = chron(detrend(rwl.M26Thu[yr.M26Thu > cut.M26Thu.mne,],
method = "ModNegExp"))
plot(rwl.M26Thu.mne.crn, add.spline = TRUE, nyrs = 10)
# M26Dec
rwl.M26Dec = read.rwl("Ring Width Chronologies/M26/M26_Deciduous_1.rwl")
rwl.report(rwl.M26Dec)
rwl.M26Dec.ids = read.ids(rwl.M26Dec, stc = c(4, 2, 1))
yr.M26Dec = time(rwl.M26Dec)
rwl.M26Dec.mne = detrend(rwl.M26Dec, method = "ModNegExp")
rwl.M26Dec.mne.sss = sss(rwl.M26Dec.mne, rwl.M26Dec.ids)
cut.M26Dec.mne = max(yr.M26Dec[rwl.M26Dec.mne.sss < 0.85])
yr.cut.M26Dec.mne = yr.M26Dec[yr.M26Dec > cut.M26Dec.mne]
rwl.M26Dec.mne.crn = chron(detrend(rwl.M26Dec[yr.M26Dec > cut.M26Dec.mne,],
method = "ModNegExp"))
plot(rwl.M26Dec.mne.crn, add.spline = TRUE, nyrs = 10)
# M26
lts.M26 = read.csv("Ring Width Chronologies/M26/DetrendingLandsat/M26_Landsat_1.csv",
row.names = 1)
plot(rownames(lts.M26), lts.M26$Avg_CC_Median, ylab = "Landsat-derived %CC", xlab = "")
lines(rownames(lts.M26), lts.M26$Avg_CC_Fitted)
### Merge into one time-series with weight based on number of cores through time ###
m26tbl = data.frame(matrix(nrow = nrow(rwl.M26Dec.mne.crn), ncol = 6)) # nrow of shortest chronology
colnames(m26tbl) = c("year", "rwi_thu", "rwi_dec", "ss_thu", "ss_dec", "rwi_combined")
m26tbl$year = 1920:2018
m26tbl$rwi_thu = rwl.M26Thu.mne.crn$xxxstd[17:115]
m26tbl$ss_thu = rwl.M26Thu.mne.crn$samp.depth[17:115]
m26tbl$rwi_dec = rwl.M26Dec.mne.crn$xxxstd
m26tbl$ss_dec = rwl.M26Dec.mne.crn$samp.depth
for(i in 1:nrow(m26tbl)) {
m26tbl[i,6] = weighted.mean(as.numeric(m26tbl[i,2:3]), m26tbl[i,4:5])
}
plot(m26tbl$year, m26tbl$rwi_combined, type = "l")
# Calc Neff and Cor.test
m26comb.cor = my.cor.test(m26tbl$rwi_combined[53:99], lts.M26$Avg_CC_Median, alternative = "greater",
method = "pearson", n = calc.neff(m26tbl$rwi_combined[53:99], lts.M26$Avg_CC_Median))
m26comb.cor
#####
##### 15Bet/Ace #####
# F30Bet
rwl.F30Bet = read.rwl("Ring Width Chronologies/F30/F30_Betula_1.rwl")
rwl.report(rwl.F30Bet)
rwl.F30Bet.ids = read.ids(rwl.F30Bet, stc = c(4, 2, 1))
yr.F30Bet = time(rwl.F30Bet)
rwl.F30Bet.mne = detrend(rwl.F30Bet, method = "ModNegExp")
rwl.F30Bet.mne.sss = sss(rwl.F30Bet.mne, rwl.F30Bet.ids)
cut.F30Bet.mne = max(yr.F30Bet[rwl.F30Bet.mne.sss < 0.85])
yr.cut.F30Bet.mne = yr.F30Bet[yr.F30Bet > cut.F30Bet.mne]
rwl.F30Bet.mne.crn = chron(detrend(rwl.F30Bet[yr.F30Bet > cut.F30Bet.mne,],
method = "ModNegExp"))
plot(rwl.F30Bet.mne.crn, add.spline = TRUE, nyrs = 10)
# F30Ace
rwl.F30Ace = read.rwl("Ring Width Chronologies/F30/F30_Acer_5.rwl")
rwl.report(rwl.F30Ace)
rwl.F30Ace.ids = read.ids(rwl.F30Ace, stc = c(4, 2, 1))
yr.F30Ace = time(rwl.F30Ace)
rwl.F30Ace.mne = detrend(rwl.F30Ace, method = "ModNegExp")
rwl.F30Ace.mne.sss = sss(rwl.F30Ace.mne, rwl.F30Ace.ids)
cut.F30Ace.mne = max(yr.F30Ace[rwl.F30Ace.mne.sss < 0.85])
yr.cut.F30Ace.mne = yr.F30Ace[yr.F30Ace > cut.F30Ace.mne]
rwl.F30Ace.mne.crn = chron(detrend(rwl.F30Ace[yr.F30Ace > cut.F30Ace.mne,],
method = "ModNegExp"))
plot(rwl.F30Ace.mne.crn, add.spline = TRUE, nyrs = 10)
# F30
lts.F30 = read.csv("Ring Width Chronologies/F30/DetrendingLandsat/F30_Landsat_1.csv",
row.names = 1)
plot(rownames(lts.F30), lts.F30$Avg_CC_Median, ylab = "Landsat-derived %CC", xlab = "")
lines(rownames(lts.F30), lts.F30$Avg_CC_Fitted)
### Merge into one time-series with weight based on number of cores through time ###
f30tbl = data.frame(matrix(nrow = nrow(rwl.F30Bet.mne.crn), ncol = 6)) # nrow of shortest chronology
colnames(f30tbl) = c("year", "rwi_bet", "rwi_ace", "ss_bet", "ss_ace", "rwi_combined")
f30tbl$year = 1942:2018
f30tbl$rwi_bet = rwl.F30Bet.mne.crn$xxxstd
f30tbl$ss_bet = rwl.F30Bet.mne.crn$samp.depth
f30tbl$rwi_ace = rwl.F30Ace.mne.crn$xxxstd[6:82]
f30tbl$ss_ace = rwl.F30Ace.mne.crn$samp.depth[6:82]
for(i in 1:nrow(f30tbl)) {
f30tbl[i,6] = weighted.mean(as.numeric(f30tbl[i,2:3]), f30tbl[i,4:5])
}
plot(f30tbl$year, f30tbl$rwi_combined, type = "l")
# Calc Neff and Cor.test
f30comb.cor = my.cor.test(f30tbl$rwi_combined[31:77], lts.F30$Avg_CC_Median, alternative = "greater",
method = "pearson", n = calc.neff(f30tbl$rwi_combined[31:77], lts.F30$Avg_CC_Median))
f30comb.cor
#####