-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprotocol.py
204 lines (151 loc) · 4.81 KB
/
protocol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
from enum import Enum, unique
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel, Field
from typing_extensions import Literal
@unique
class Role(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
TOOL = "tool"
@unique
class Finish(str, Enum):
STOP = "stop"
LENGTH = "length"
TOOL = "tool_calls"
@unique
class Intention(str, Enum):
STOP = "stop"
LENGTH = "length"
TOOL = "tool_calls"
@unique
class DataRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
OBSERVATION = "observation"
class ModelCard(BaseModel):
id: str
object: Literal["model"] = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: Literal["owner"] = "owner"
class ModelList(BaseModel):
object: Literal["list"] = "list"
data: List[ModelCard] = []
class Function(BaseModel):
name: str
arguments: str
class FunctionDefinition(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class FunctionAvailable(BaseModel):
type: Literal["function", "code_interpreter"] = "function"
function: Optional[FunctionDefinition] = None
class FunctionCall(BaseModel):
id: str
type: Literal["function"] = "function"
function: Function
class ImageURL(BaseModel):
url: str
class MultimodalInputItem(BaseModel):
type: Literal["text", "image_url"]
text: Optional[str] = None
image_url: Optional[ImageURL] = None
class ChatMessage(BaseModel):
role: Role
content: Optional[Union[str, List[MultimodalInputItem]]] = None
tool_calls: Optional[List[FunctionCall]] = None
class ChatCompletionMessage(BaseModel):
role: Optional[Role] = None
content: Optional[str] = None
tool_calls: Optional[List[FunctionCall]] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
tools: Optional[List[FunctionAvailable]] = None
do_sample: bool = True
temperature: Optional[float] = None
top_p: Optional[float] = None
n: int = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
stream: bool = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: Finish
class ChatCompletionStreamResponseChoice(BaseModel):
index: int
delta: ChatCompletionMessage
finish_reason: Optional[Finish] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: str
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionStreamResponseChoice]
class ScoreEvaluationRequest(BaseModel):
model: str
messages: List[str]
max_length: Optional[int] = None
class ScoreEvaluationResponse(BaseModel):
id: str
object: Literal["score.evaluation"] = "score.evaluation"
model: str
scores: List[float]
class EmbeddingLastHiddenState(BaseModel):
id: str
object: Literal["tools.embedding"] = "tools.embedding"
model: str
embeddings: List = None
class IntentionCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
tools: Optional[List[FunctionAvailable]] = None
do_sample: bool = True
temperature: Optional[float] = None
top_p: Optional[float] = None
n: int = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
stream: bool = False
with_file: bool = False
class IntentionResponse(BaseModel):
id: str
object: Literal["tools.intention"] = "tools.intention"
model: str
messages: List = None
class Image2TextInputItem(BaseModel):
type: Literal["text", "image"]
text: Optional[str] = None
image: Optional[str] = None
class ChatImage2TextMessage(BaseModel):
role: Role
content: Optional[Union[str, List[Image2TextInputItem]]] = None
tool_calls: Optional[List[FunctionCall]] = None
class ChatImage2TextCompletionRequest(BaseModel):
model: str
messages: List[ChatImage2TextMessage]
tools: Optional[List[FunctionAvailable]] = None
do_sample: bool = True
temperature: Optional[float] = None
top_p: Optional[float] = None
n: int = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
stream: bool = False