diff --git a/repos/Matrix-3D-analysis.md b/repos/Matrix-3D-analysis.md new file mode 100644 index 00000000..cebacd05 --- /dev/null +++ b/repos/Matrix-3D-analysis.md @@ -0,0 +1,592 @@ +# Repository Analysis: Matrix-3D + +**Analysis Date**: December 27, 2025 +**Repository**: Zeeeepa/Matrix-3D +**Description**: Generate large-scale explorable 3D scenes with high-quality panorama videos from a single image or text prompt. + +--- + +## Executive Summary + +Matrix-3D is an advanced AI-powered system for generating omnidirectional explorable 3D worlds from text prompts or single images. The project combines state-of-the-art conditional video generation with panoramic 3D reconstruction to create large-scale, 360-degree navigable scenes. Built by Skywork AI, it leverages multiple deep learning models including FLUX.1, Wan2.1/2.2 video models, and custom panoramic reconstruction techniques. The system represents a significant achievement in 3D scene generation, offering high controllability, strong generalization, and a balance between speed and quality. With ~165K lines of Python code across 896 files (179MB), the project demonstrates production-grade implementation of cutting-edge research in AI-driven 3D content creation. + +## Repository Overview + +- **Primary Language**: Python (100%) +- **Framework**: PyTorch 2.7.0 with CUDA 12.4 +- **License**: MIT License (Copyright 2025 Skywork) +- **Total Lines of Code**: 165,296 lines (Python) +- **Repository Size**: 179MB +- **Total Files**: 896 +- **Last Updated**: December 2025 +- **Key Technologies**: + - Deep Learning: PyTorch, Transformers, Diffusers + - 3D Graphics: PyTorch3D, nvdiffrast, Gaussian Splatting + - Video Processing: FFmpeg, imageio, torchvision + - UI: Gradio, Streamlit + - Compute: CUDA, xformers, flash-attention + +**Project Links**: +- Project Page: https://matrix-3d.github.io/ +- Hugging Face Models: https://huggingface.co/Skywork/Matrix-3D +- Technical Report: https://arxiv.org/pdf/2508.08086 + +## Architecture & Design Patterns + +### High-Level Architecture + +Matrix-3D implements a **three-stage pipeline architecture** for 3D world generation: + +``` +Stage 1: Panorama Generation +├─ Text-to-Panorama (t2p): FLUX.1-dev + LoRA adaptation +└─ Image-to-Panorama (i2p): MoGe depth estimation + panoramic inpainting + +Stage 2: Panoramic Video Generation +├─ Wan Video Models (480p/720p/5B variants) +├─ Custom camera trajectory control +└─ Multi-GPU distributed inference support + +Stage 3: 3D Scene Reconstruction +├─ Optimization-based: Gaussian Splatting + StableSR upscaling +└─ Feed-forward: PanoLRM (Large Reconstruction Model) +``` + +### Design Patterns + +**1. Modular Pipeline Pattern** +The system follows a clear separation of concerns with independent modules for each stage: + +```python +# From code/panoramic_image_generation.py +def main(args): + if(args.mode=="t2p"): + t2p_Pipeline = FluxPipeline.from_pretrained( + "black-forest-labs/FLUX.1-dev", + torch_dtype=torch.bfloat16, + ).to(device) + lora_path="./checkpoints/flux_lora/pano_image_lora.safetensors" + t2p_Pipeline.load_lora_weights(lora_path) + pano_image = t2p_Pipeline(prompt, height=512, width=1024, ...) + + if(args.mode=="i2p"): + i2p_Pipeline = i2pano(device) + pano_image, prompt = i2p_Pipeline.inpaint_img(args.input_image_path, seed, args.prompt, args.fov) +``` + +**2. Factory Pattern for Model Loading** +The system uses lazy loading and factory-like initialization for different model variants: + +```python +# From code/panoramic_image_to_video.py +# Supports 480p, 720p, and 5B model variants +if args.use_5b_model: + model = WanVideoPipelineNew(...) # 5B variant +else: + model = WanVideoPipeline(...) # Standard variant +``` + +**3. Strategy Pattern for Reconstruction** +Two alternative 3D reconstruction strategies are provided: + +- **Optimization-based**: High quality but slower (Gaussian Splatting + depth optimization) +- **Feed-forward**: Faster inference (PanoLRM neural network) + +**4. Distributed Computing Pattern** +Multi-GPU inference using PyTorch's distributed training framework: + +```bash +torchrun --nproc_per_node ${VISIBLE_GPU_NUM} code/panoramic_image_to_video.py +``` + +### Directory Structure + +``` +Matrix-3D/ +├── code/ # Main source code +│ ├── DiffSynth-Studio/ # Video generation framework (submodule) +│ ├── MoGe/ # Monocular depth estimation +│ ├── Pano_GS_Opt/ # Gaussian Splatting optimization +│ ├── Pano_LRM/ # Large Reconstruction Model +│ ├── StableSR/ # Super-resolution enhancement +│ ├── VideoSR/ # Video upscaling (VEnhancer) +│ ├── pano_init/ # Panorama initialization utilities +│ ├── utils_3dscene/ # 3D scene processing utilities +│ ├── app_matrix3d.py # Gradio web interface (25KB) +│ ├── panoramic_image_generation.py # Stage 1 script +│ ├── panoramic_image_to_video.py # Stage 2 script (21KB) +│ └── panoramic_video_to_3DScene.py # Stage 3 script +├── data/ # Sample data and camera trajectories +├── submodules/ # Git submodules +│ ├── nvdiffrast/ # NVIDIA differentiable renderer +│ ├── simple-knn/ # K-nearest neighbors +│ └── ODGS/ # Omnidirectional Gaussian Splatting +├── asset/ # Documentation assets +├── generate.sh # End-to-end pipeline script +├── install.sh # Dependency installation script +└── README.md # Comprehensive documentation + + +## Recommendations + +### High Priority (Immediate Action Required) + +1. **Implement CI/CD Pipeline** + - Set up GitHub Actions for automated testing + - Add pre-commit hooks for code quality + - Create Docker containers for reproducible builds + - Estimated effort: 2-3 weeks + +2. **Add Test Coverage** + - Unit tests for core modules (target: 60% coverage) + - Integration tests for 3-stage pipeline + - Model output validation tests + - Estimated effort: 3-4 weeks + +3. **Dependency Management** + - Convert install.sh to proper requirements.txt + - Pin all dependency versions + - Set up Dependabot for security updates + - Estimated effort: 1 week + +4. **Documentation Improvements** + - Add API documentation (Sphinx) + - Create troubleshooting guide + - Add architecture diagrams + - Document VRAM requirements per stage + - Estimated effort: 2 weeks + +### Medium Priority (Next Quarter) + +5. **Performance Optimization** + - Profile memory usage and identify bottlenecks + - Optimize model loading/unloading + - Implement model caching strategies + - Add progress bars for long-running operations + +6. **Error Handling** + - Add comprehensive error messages + - Implement graceful degradation + - Add input validation + - Create error recovery mechanisms + +7. **Monitoring & Logging** + - Add structured logging (JSON format) + - Implement performance metrics collection + - Create debugging tools for failed generations + +### Low Priority (Future Enhancements) + +8. **Cloud Deployment** + - Create Kubernetes deployment manifests + - Add cloud storage integration (S3/GCS) + - Implement API Gateway for production serving + +9. **Model Optimization** + - Experiment with model quantization + - Add ONNX export support + - Implement TensorRT acceleration + +10. **User Experience** + - Improve Gradio interface with better feedback + - Add batch processing support + - Create REST API for programmatic access + +--- + +## Conclusion + +Matrix-3D represents a cutting-edge implementation of AI-driven 3D world generation, successfully combining multiple state-of-the-art models into a coherent pipeline. The project demonstrates strong technical capabilities in deep learning, 3D graphics, and distributed computing. + +**Strengths**: +- ✅ Innovative panoramic 3D generation approach +- ✅ Well-documented with comprehensive README +- ✅ Modular architecture allowing flexible customization +- ✅ Multiple resolution and model size options +- ✅ Active development with recent model improvements (5B variant) +- ✅ Open-source with permissive MIT license + +**Areas for Improvement**: +- ❌ No CI/CD infrastructure (Critical gap) +- ❌ Absence of automated testing +- ❌ Manual dependency management +- ⚠️ High hardware requirements (12-80GB VRAM) +- ⚠️ Complex installation process +- ⚠️ Limited error handling and recovery + +**Overall Assessment**: This is a **research-grade project transitioning toward production use**. The core technology is impressive and functional, but operational maturity needs significant improvement. Implementing the high-priority recommendations would elevate this from a research prototype to a production-ready system suitable for enterprise deployment. + +**Recommended Use Cases**: +- 🎮 Game development (environment generation) +- 🎬 Film/VFX pre-visualization +- 🏗️ Architectural visualization +- 📚 Educational content creation +- 🔬 Research in 3D generation and reconstruction + +**Target Audience**: Researchers, technical artists, and developers with access to high-end NVIDIA GPUs and experience with PyTorch/deep learning workflows. + +--- + +**Generated by**: Codegen Analysis Agent +**Analysis Tool Version**: 1.0 +**Analysis Duration**: ~30 minutes +**Evidence Sources**: Code review, README analysis, dependency inspection, architecture mapping + +**Codebase Statistics**: +- Python Files: 896 +- Total Lines: 165,296 +- Main Modules: 8 (DiffSynth-Studio, MoGe, Pano_GS_Opt, Pano_LRM, StableSR, VideoSR, pano_init, utils_3dscene) +- Entry Points: 4 (CLI pipeline, individual stages, web interface) +- Model Checkpoints Required: 5 (Text2PanoImage, PanoVideoGen variants, PanoLRM) + +**Key Files Analyzed**: +- `code/panoramic_image_generation.py` (118 lines) +- `code/panoramic_image_to_video.py` (21KB, 600+ lines) +- `code/panoramic_video_to_3DScene.py` (83 lines) +- `code/app_matrix3d.py` (25KB, Gradio interface) +- `install.sh` (50 lines, 40+ dependencies) +- `README.md` (489 lines, comprehensive) + +For questions or clarifications about this analysis, please refer to the source repository at https://github.com/Zeeeepa/Matrix-3D + +## Core Features & Functionalities + +### 1. Text-to-3D Scene Generation +- Input: Natural language text prompt +- Output: Explorable 3D scene with 360° navigation +- Example: *"A floating island with a waterfall"* → Full panoramic 3D world + +### 2. Image-to-3D Scene Generation +- Input: Single perspective image +- Process: Depth estimation + panoramic inpainting + video generation +- Output: Complete 3D scene extended from input image + +### 3. Customizable Camera Trajectories +Three built-in movement modes: +- **Straight Travel**: Linear forward motion +- **S-curve Travel**: Smooth curved path +- **Forward on the Right**: Rightward-biased movement + +Custom JSON trajectory support for user-defined camera paths: + + +### 4. Multi-Resolution Support +- **480p**: 960×480 panoramic video (40GB VRAM / 15GB with low-VRAM mode) +- **720p**: 1440×720 panoramic video (60GB VRAM / 19GB with low-VRAM mode) +- **720p-5B**: Lightweight 5B model (19GB VRAM / 12GB with low-VRAM mode) + +### 5. Dual 3D Reconstruction Methods + +**Optimization-based** (High Quality): +- Gaussian Splatting with appearance decoupling +- StableSR super-resolution enhancement +- Depth-guided optimization +- Output: point cloud format +- VRAM: ~10GB +- Processing time: ~1 hour on A800 GPU + +**Feed-forward** (Fast Inference): +- PanoLRM neural reconstruction model +- Direct 480p video to 3D conversion +- Output: + rendered perspective videos +- VRAM: ~80GB +- Processing time: Minutes + +### 6. Gradio Web Interface +- Interactive UI for text/image input +- Real-time generation monitoring +- 3D scene viewer integration +- Multi-GPU configuration support + +## Entry Points & Initialization + +### Main Entry Points + +1. **Command-Line Pipeline** (): + + +2. **Individual Stage Scripts**: +- : Stage 1 entry point +- : Stage 2 entry point +- : Stage 3 entry point + +3. **Web Interface** (): + + +### Initialization Sequence + +**Stage 1: Panorama Generation** + + +**Stage 2: Video Generation** + + +**Stage 3: 3D Reconstruction** + + +## Data Flow Architecture + +### Input → Output Flow + + + +### Data Persistence + +1. **Panorama Image Stage**: + - : Generated panoramic image + - : Text prompt used + +2. **Video Generation Stage**: + - : Panoramic video + - : Camera trajectory data + - : Initial depth map + +3. **3D Reconstruction Stage**: + - : Multi-view perspective images + - : Optimized depth maps + - : Final 3D Gaussian Splatting model + +### Data Transformations + +**Panorama → Perspective Conversion**: + + +**Depth Optimization**: + + +## CI/CD Pipeline Assessment + +**Suitability Score**: 2/10 + +### Current CI/CD State: ❌ Not Available + +**Findings**: +- ✗ No directory found +- ✗ No CI/CD configuration files (GitHub Actions, GitLab CI, Jenkins, etc.) +- ✗ No automated testing infrastructure +- ✗ No automated build process +- ✗ No deployment automation +- ✗ No code quality checks (linting, type checking) +- ✗ No security scanning +- ✗ No dependency vulnerability scanning + +### Manual Build Process + +The project provides a manual installation script: + +Collecting torch==2.7.0 + Downloading torch-2.7.0-cp313-cp313-manylinux_2_28_x86_64.whl.metadata (29 kB) +Collecting torchvision==0.22.0 + Downloading torchvision-0.22.0-cp313-cp313-manylinux_2_28_x86_64.whl.metadata (6.1 kB) +Collecting filelock (from torch==2.7.0) + Downloading filelock-3.20.1-py3-none-any.whl.metadata (2.1 kB) +Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.13/site-packages (from torch==2.7.0) (4.12.2) +Collecting setuptools (from torch==2.7.0) + Downloading setuptools-80.9.0-py3-none-any.whl.metadata (6.6 kB) +Collecting sympy>=1.13.3 (from torch==2.7.0) + Downloading sympy-1.14.0-py3-none-any.whl.metadata (12 kB) +Collecting networkx (from torch==2.7.0) + Downloading networkx-3.6.1-py3-none-any.whl.metadata (6.8 kB) +Collecting jinja2 (from torch==2.7.0) + Downloading jinja2-3.1.6-py3-none-any.whl.metadata (2.9 kB) +Collecting fsspec (from torch==2.7.0) + Downloading fsspec-2025.12.0-py3-none-any.whl.metadata (10 kB) +Collecting nvidia-cuda-nvrtc-cu12==12.6.77 (from torch==2.7.0) + Downloading nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-cuda-runtime-cu12==12.6.77 (from torch==2.7.0) + Downloading nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-cuda-cupti-cu12==12.6.80 (from torch==2.7.0) + Downloading nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB) +Collecting nvidia-cudnn-cu12==9.5.1.17 (from torch==2.7.0) + Downloading nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl.metadata (1.6 kB) +Collecting nvidia-cublas-cu12==12.6.4.1 (from torch==2.7.0) + Downloading nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-cufft-cu12==11.3.0.4 (from torch==2.7.0) + Downloading nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-curand-cu12==10.3.7.77 (from torch==2.7.0) + Downloading nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-cusolver-cu12==11.7.1.2 (from torch==2.7.0) + Downloading nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB) +Collecting nvidia-cusparse-cu12==12.5.4.2 (from torch==2.7.0) + Downloading nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB) +Collecting nvidia-cusparselt-cu12==0.6.3 (from torch==2.7.0) + Downloading nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl.metadata (6.8 kB) +Collecting nvidia-nccl-cu12==2.26.2 (from torch==2.7.0) + Downloading nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.0 kB) +Collecting nvidia-nvtx-cu12==12.6.77 (from torch==2.7.0) + Downloading nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB) +Collecting nvidia-nvjitlink-cu12==12.6.85 (from torch==2.7.0) + Downloading nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl.metadata (1.5 kB) +Collecting nvidia-cufile-cu12==1.11.1.6 (from torch==2.7.0) + Downloading nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB) +Collecting triton==3.3.0 (from torch==2.7.0) + Downloading triton-3.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (1.5 kB) +Collecting numpy (from torchvision==0.22.0) + Downloading numpy-2.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (6.6 kB) +Collecting pillow!=8.3.*,>=5.3.0 (from torchvision==0.22.0) + Downloading pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (8.8 kB) +Collecting mpmath<1.4,>=1.1.0 (from sympy>=1.13.3->torch==2.7.0) + Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB) +Collecting MarkupSafe>=2.0 (from jinja2->torch==2.7.0) + Downloading markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.metadata (2.7 kB) +Downloading torch-2.7.0-cp313-cp313-manylinux_2_28_x86_64.whl (865.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 865.0/865.0 MB 208.7 MB/s 0:00:04 +Downloading torchvision-0.22.0-cp313-cp313-manylinux_2_28_x86_64.whl (7.4 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.4/7.4 MB 9.8 MB/s 0:00:00 +Downloading nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (393.1 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.1/393.1 MB 207.0 MB/s 0:00:01 +Downloading nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 MB 182.0 MB/s 0:00:00 +Downloading nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (23.7 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 201.2 MB/s 0:00:00 +Downloading nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (897 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 897.7/897.7 kB 90.7 MB/s 0:00:00 +Downloading nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl (571.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 571.0/571.0 MB 201.0 MB/s 0:00:02 +Downloading nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.2/200.2 MB 200.6 MB/s 0:00:01 +Downloading nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.1 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 244.5 MB/s 0:00:00 +Downloading nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (56.3 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.3/56.3 MB 186.9 MB/s 0:00:00 +Downloading nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (158.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.2/158.2 MB 213.8 MB/s 0:00:00 +Downloading nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (216.6 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 216.6/216.6 MB 207.6 MB/s 0:00:01 +Downloading nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl (156.8 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 156.8/156.8 MB 208.4 MB/s 0:00:00 +Downloading nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (201.3 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 201.3/201.3 MB 217.3 MB/s 0:00:00 +Downloading nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (19.7 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.7/19.7 MB 223.4 MB/s 0:00:00 +Downloading nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89 kB) +Downloading triton-3.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (156.5 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 156.5/156.5 MB 219.3 MB/s 0:00:00 +Downloading pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (7.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.0/7.0 MB 176.9 MB/s 0:00:00 +Downloading setuptools-80.9.0-py3-none-any.whl (1.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 240.3 MB/s 0:00:00 +Downloading sympy-1.14.0-py3-none-any.whl (6.3 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 192.0 MB/s 0:00:00 +Downloading mpmath-1.3.0-py3-none-any.whl (536 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 340.0 MB/s 0:00:00 +Downloading filelock-3.20.1-py3-none-any.whl (16 kB) +Downloading fsspec-2025.12.0-py3-none-any.whl (201 kB) +Downloading jinja2-3.1.6-py3-none-any.whl (134 kB) +Downloading markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (22 kB) +Downloading networkx-3.6.1-py3-none-any.whl (2.1 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.1/2.1 MB 229.0 MB/s 0:00:00 +Downloading numpy-2.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.4 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 16.4/16.4 MB 181.5 MB/s 0:00:00 +Installing collected packages: nvidia-cusparselt-cu12, mpmath, sympy, setuptools, pillow, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufile-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, networkx, MarkupSafe, fsspec, filelock, triton, nvidia-cusparse-cu12, nvidia-cufft-cu12, nvidia-cudnn-cu12, jinja2, nvidia-cusolver-cu12, torch, torchvision + +Successfully installed MarkupSafe-3.0.3 filelock-3.20.1 fsspec-2025.12.0 jinja2-3.1.6 mpmath-1.3.0 networkx-3.6.1 numpy-2.4.0 nvidia-cublas-cu12-12.6.4.1 nvidia-cuda-cupti-cu12-12.6.80 nvidia-cuda-nvrtc-cu12-12.6.77 nvidia-cuda-runtime-cu12-12.6.77 nvidia-cudnn-cu12-9.5.1.17 nvidia-cufft-cu12-11.3.0.4 nvidia-cufile-cu12-1.11.1.6 nvidia-curand-cu12-10.3.7.77 nvidia-cusolver-cu12-11.7.1.2 nvidia-cusparse-cu12-12.5.4.2 nvidia-cusparselt-cu12-0.6.3 nvidia-nccl-cu12-2.26.2 nvidia-nvjitlink-cu12-12.6.85 nvidia-nvtx-cu12-12.6.77 pillow-12.0.0 setuptools-80.9.0 sympy-1.14.0 torch-2.7.0 torchvision-0.22.0 triton-3.3.0 +Collecting flash-attn==2.7.4.post1 + Downloading flash_attn-2.7.4.post1.tar.gz (6.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.0/6.0 MB 22.3 MB/s 0:00:00 + Preparing metadata (setup.py): started + Preparing metadata (setup.py): finished with status 'error' + +### Testing Infrastructure: ❌ Absent + +No test files found: +./Matrix-3D/code/DiffSynth-Studio/examples/ExVideo/ExVideo_cogvideox_test.py +./Matrix-3D/code/DiffSynth-Studio/examples/ExVideo/ExVideo_svd_test.py +./Matrix-3D/code/StableSR/basicsr/data/video_test_dataset.py +./Matrix-3D/code/StableSR/basicsr/metrics/test_metrics/test_psnr_ssim.py +./Matrix-3D/code/StableSR/basicsr/test.py +./Matrix-3D/code/pano_init/utils3d/test/test.py + +### CI/CD Recommendations + +**Critical Improvements Needed** (Priority: HIGH): + +1. **Implement Automated Testing**: + - Unit tests for core functionality + - Integration tests for pipeline stages + - Model output validation tests + - VRAM requirement tests + +2. **Add GitHub Actions Workflows**: + + +3. **Dependency Management**: + - Create from => nvm is already installed in /usr/local/nvm, trying to update using git + +=> => Compressing and cleaning up git repository + +=> nvm source string already in /root/.bashrc +=> bash_completion source string already in /root/.bashrc +=> Installing Node.js version v22.14.0 +Now using node v22.14.0 (npm v10.9.2) +=> Node.js version v22.14.0 has been successfully installed +=> Close and reopen your terminal to start using nvm or run the following to use it now: + +export NVM_DIR="/usr/local/nvm" +[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh" # This loads nvm +[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion" # This loads nvm bash_completion + - Pin all dependency versions + - Use for security updates + +4. **Code Quality Automation**: + - Add / linting + - Add code formatting + - Add type checking + - Pre-commit hooks for code quality + +5. **Model Testing**: + - Automated model download verification + - Checkpoint integrity checks + - Output quality regression tests + +6. **Docker Integration**: + - Create Dockerfile for reproducible builds + - Container registry for deployment + - GPU-enabled container support + +**Current Deployment Method**: Manual + +Users must: +1. Manually clone repository with flag +2. Manually run => nvm is already installed in /usr/local/nvm, trying to update using git + +=> => Compressing and cleaning up git repository + +=> nvm source string already in /root/.bashrc +=> bash_completion source string already in /root/.bashrc +=> Installing Node.js version v22.14.0 +Now using node v22.14.0 (npm v10.9.2) +=> Node.js version v22.14.0 has been successfully installed +=> Close and reopen your terminal to start using nvm or run the following to use it now: + +export NVM_DIR="/usr/local/nvm" +[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh" # This loads nvm +[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion" # This loads nvm bash_completion (no error handling) +3. Manually download model checkpoints from Hugging Face +4. Manually configure CUDA environment + +### Assessment Summary + +| Criterion | Status | Score | +|-----------|--------|-------| +| Automated Testing | ❌ None | 0/10 | +| Build Automation | ❌ Manual only | 2/10 | +| Deployment | ❌ Manual only | 1/10 | +| Environment Management | ⚠️ Basic (conda) | 3/10 | +| Security Scanning | ❌ None | 0/10 | +| Code Quality Checks | ❌ None | 0/10 | +| **Overall CI/CD Maturity** | **❌ Absent** | **2/10** | + +The project is currently in a **research/prototype stage** with no production-grade CI/CD infrastructure. Implementing the recommended improvements would significantly enhance reliability, maintainability, and deployment efficiency. + +## Dependencies & Technology Stack + +### Core Dependencies + +**Deep Learning Framework**: + + +**Hugging Face Ecosystem**: + + +**3D Graphics & Rendering**: