-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_non_pre_encoded.py
238 lines (210 loc) · 9.46 KB
/
main_non_pre_encoded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import os
import random
import string
import sys
import pandas as pd
from datetime import datetime
sys.path.append("../")
import numpy as np
import wandb
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm.auto import tqdm
import sklearn.metrics as metrics
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR, ExponentialLR
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score
from sklearn.metrics import precision_recall_curve, f1_score, precision_recall_fscore_support
from transformers import EsmTokenizer, EsmForMaskedLM, AutoModel, AutoTokenizer
from utils.process_datasets import DatabaseProcessor
from utils.metric_learning_models_2 import FusionDTI
# import lightgbm as lgb
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
parser.add_argument(
"--prot_encoder_path",
type=str,
default="westlake-repl/SaProt_650M_AF2",
# westlake-repl/SaProt_650M_PDB
help="path/name of protein encoder model located",
)
parser.add_argument(
"--drug_encoder_path",
type=str,
default="HUBioDataLab/SELFormer",
# "ibm/MoLFormer-XL-both-10pct"
help="path/name of SMILE pre-trained language model",
)
parser.add_argument(
"--input_feature_save_path",
type=str,
default="dataset/processed_DTI_Token",
help="path of tokenized training data",
)
parser.add_argument(
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
)
parser.add_argument(
"--fusion", default="CAN", type=str, help="{CAN|BAN}")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--group_size", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--test", type=int, default=0)
parser.add_argument("--use_pooled", action="store_true", default=True)
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument(
"--save_path_prefix",
type=str,
default="save_model_ckp/",
help="save the result in which directory",
)
parser.add_argument(
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
)
parser.add_argument(
"--dataset",
type=str,
default="BindingDB",
help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')"
)
return parser.parse_args()
def train(model, train_loader, valid_loader, criterion, optimizer, scheduler, device, num_epochs=200, patience=20):
best_auc = 0
best_model = None
epochs_without_improvement = 0 # Initialize counter for early stopping
for epoch in range(num_epochs):
model.train()
total_loss = 0
for step, batch in tqdm(enumerate(train_loader)):
prot_input, prot_mask, drug_input, drug_mask, label = batch
prot_input, prot_mask, drug_input, drug_mask, label = prot_input.to(device), prot_mask.to(device), drug_input.to(device), drug_mask.to(device), label.to(device)
optimizer.zero_grad()
output = model(prot_input, prot_mask, drug_input, drug_mask)
loss = criterion(output, label.unsqueeze(1).float())
loss.backward()
optimizer.step()
total_loss += loss.item()
scheduler.step()
# Validation phase
model.eval()
with torch.no_grad():
predictions, actuals = [], []
for step, batch in tqdm(enumerate(valid_loader)):
prot_input, prot_mask, drug_input, drug_mask, label = batch
prot_input, prot_mask, drug_input, drug_mask, label = prot_input.to(device), prot_mask.to(device), drug_input.to(device), drug_mask.to(device), label.to(device)
output = model(prot_input, prot_mask, drug_input, drug_mask)
predictions.extend(output.squeeze().cpu().numpy())
actuals.extend(label.cpu().numpy())
auc = roc_auc_score(actuals, predictions)
print(f'Epoch {epoch+1}: Validation AUC: {auc:.4f}')
# Log metrics to wandb
wandb.log({"epoch": epoch + 1, "loss": total_loss / len(train_loader), "val_auc": auc})
if auc > best_auc:
best_auc = auc
best_model = model.state_dict()
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
if epochs_without_improvement >= patience:
print(f'Early stopping triggered after {epoch+1} epochs.')
break
print(f'Epoch {epoch+1}, Loss: {total_loss / len(train_loader)}')
return best_model
def test(model, test_loader, device):
model.eval()
predictions, actuals = [], []
with torch.no_grad():
for step, batch in tqdm(enumerate(test_loader)):
prot_input, prot_mask, drug_input, drug_mask, label = batch
prot_input, prot_mask, drug_input, drug_mask, label = prot_input.to(device), prot_mask.to(device), drug_input.to(device), drug_mask.to(device), label.to(device)
output = model(prot_input, prot_mask, drug_input, drug_mask)
predictions.extend(output.squeeze().cpu().numpy())
actuals.extend(label.cpu().numpy())
auc = roc_auc_score(actuals, predictions)
aupr = average_precision_score(actuals, predictions)
accuracy = accuracy_score(actuals, np.array(predictions) > 0.5)
print(f'Test AUC: {auc}, AUPR: {aupr}, Accuracy: {accuracy}')
wandb.log({"Test AUC": auc, "AUPR": aupr, "Accuracy": accuracy})
def collate_fn_batch_encoding(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = drug_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
if __name__ == "__main__":
args = parse_config()
device = torch.device(args.device)
print(f"Current device: {args.device}.")
wandb.init(project="DTI_Prediction_with_Token-level_Fusion", config=args, save_code=True)
wandb.config.update(args)
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
best_model_dir = (
f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
)
os.makedirs(best_model_dir)
args.save_name = best_model_dir
Dataset = DatabaseProcessor(args)
train_examples = Dataset.get_train_examples()
valid_examples = Dataset.get_val_examples()
test_examples = Dataset.get_test_examples()
train_dataloader = DataLoader(
train_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
valid_dataloader = DataLoader(
valid_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
test_dataloader = DataLoader(
test_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
print("prot_tokenizer", len(prot_tokenizer))
# drug_tokenizer = AutoTokenizer.from_pretrained(args.drug_encoder_path, trust_remote_code=True)
drug_tokenizer = AutoTokenizer.from_pretrained(args.drug_encoder_path)
print("drug_tokenizer", len(drug_tokenizer))
prot_encoder = EsmForMaskedLM.from_pretrained(args.prot_encoder_path).to(args.device)
# drug_model = AutoModel.from_pretrained(args.drug_encoder_path, deterministic_eval=True, trust_remote_code=True)
drug_encoder = AutoModel.from_pretrained(args.drug_encoder_path).to(args.device)
model = FusionDTI(prot_encoder, drug_encoder, 1280, 768, args).to(device)
criterion = nn.BCELoss()
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-4)
# optimizer = optim.AdamW(model.parameters(), lr=1e-3)
scheduler = CosineAnnealingLR(optimizer, T_max=100, eta_min=1e-8)
# Load features from the saved batch files
best_model = train(model, train_dataloader, valid_dataloader, criterion, optimizer, scheduler, device, num_epochs=500)
model.load_state_dict(best_model)
test(model, test_dataloader, device)
wandb.finish()