-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_token.py
316 lines (274 loc) · 13.1 KB
/
main_token.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import os
import random
import string
import sys
import pandas as pd
from datetime import datetime
os.environ["TOKENIZERS_PARALLELISM"] = "false"
sys.path.append("../")
import numpy as np
import wandb
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm.auto import tqdm
import sklearn.metrics as metrics
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR, ExponentialLR
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score
from sklearn.metrics import precision_recall_curve, f1_score, precision_recall_fscore_support
from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer, AutoTokenizer
from utils.process_datasets import DatabaseProcessor
from utils.metric_learning_models import BatchFileDataset, Pre_encoded, FusionDTI
# from bertviz import head_view
# import lightgbm as lgb
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
parser.add_argument(
"--prot_encoder_path",
type=str,
default="westlake-repl/SaProt_650M_AF2",
# westlake-repl/SaProt_650M_PDB
help="path/name of protein encoder model located",
)
parser.add_argument(
"--drug_encoder_path",
type=str,
default="HUBioDataLab/SELFormer",
# "ibm/MoLFormer-XL-both-10pct"
help="path/name of SMILE pre-trained language model",
)
parser.add_argument(
"--input_feature_save_path",
type=str,
default="dataset/processed_DTI_Token",
help="path of tokenized training data",
)
parser.add_argument(
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
)
parser.add_argument(
"--fusion", default="CAN", type=str, help="{CAN|BAN}")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--group_size", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--test", type=int, default=0)
parser.add_argument("--use_pooled", action="store_true", default=True)
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument(
"--save_path_prefix",
type=str,
default="save_model_ckp/",
help="save the result in which directory",
)
parser.add_argument(
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
)
parser.add_argument(
"--dataset",
type=str,
default="BindingDB",
help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')"
)
return parser.parse_args()
def get_feature(model, dataloader, args, set_type):
# Create a subdirectory within input_feature_save_path
subdirectory = os.path.join(args.input_feature_save_path, args.dataset)
os.makedirs(subdirectory, exist_ok=True)
batch_files = []
batch_number = 0
with torch.no_grad():
for step, batch in tqdm(enumerate(dataloader)):
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask= prot_input_ids.to(args.device), prot_attention_mask.to(args.device),drug_input_ids.to(args.device), drug_attention_mask.to(args.device)
prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask)
prot_embed = prot_embed.cpu()
drug_embed = drug_embed.cpu()
prot_attention_mask = prot_attention_mask.cpu()
drug_attention_mask = drug_attention_mask.cpu()
label = label.cpu()
# Save each batch to a separate file in the subdirectory
batch_file = os.path.join(
subdirectory,
f"{args.dataset}_{set_type}_batch_{batch_number}.pt"
)
torch.save({
'prot': prot_embed,
'drug': drug_embed,
'prot_mask': prot_attention_mask,
'drug_mask': drug_attention_mask,
'y': label
}, batch_file)
batch_files.append(batch_file)
batch_number += 1
return batch_files
def get_data_loader(file_list, batch_file, shuffle=False, num_workers=4):
dataset = BatchFileDataset(file_list)
return DataLoader(dataset, batch_file, shuffle=shuffle, num_workers=num_workers, collate_fn=lambda x: x[0])
def encode_pretrained_feature(args):
# Define the path to check for existing batch files
input_feat_path = os.path.join(args.input_feature_save_path, args.dataset)
# Check if the directory exists, if not, create it
if not os.path.exists(input_feat_path):
os.makedirs(input_feat_path)
# Check if batch files are already saved
train_files = sorted([os.path.join(input_feat_path, f) for f in os.listdir(input_feat_path) if f.startswith(f"{args.dataset}_train_batch")])
valid_files = sorted([os.path.join(input_feat_path, f) for f in os.listdir(input_feat_path) if f.startswith(f"{args.dataset}_valid_batch")])
test_files = sorted([os.path.join(input_feat_path, f) for f in os.listdir(input_feat_path) if f.startswith(f"{args.dataset}_test_batch")])
if train_files and valid_files and test_files:
print("Batch files found and will be used.")
else:
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
print("prot_tokenizer", len(prot_tokenizer))
# drug_tokenizer = AutoTokenizer.from_pretrained(args.drug_encoder_path, trust_remote_code=True)
drug_tokenizer = AutoTokenizer.from_pretrained(args.drug_encoder_path)
print("drug_tokenizer", len(drug_tokenizer))
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
# drug_model = AutoModel.from_pretrained(args.drug_encoder_path, deterministic_eval=True, trust_remote_code=True)
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)
model = Pre_encoded(prot_model, drug_model, args)
model = model.to(args.device)
prot_model = model.prot_encoder
drug_model = model.drug_encoder
def collate_fn_batch_encoding(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = drug_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
# print("decoded_drug_inputs:", query_encodings2["input_ids"][0])
# print("decoded_drug_inputs:", drug_tokenizer.decode(query_encodings2["input_ids"][0], skip_special_tokens=True))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
Dataset = DatabaseProcessor(args)
train_examples = Dataset.get_train_examples()
valid_examples = Dataset.get_val_examples()
test_examples = Dataset.get_test_examples()
train_dataloader = DataLoader(
train_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
valid_dataloader = DataLoader(
valid_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
test_dataloader = DataLoader(
test_examples,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn_batch_encoding,
)
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
train_files = get_feature(model, train_dataloader, args, "train")
valid_files = get_feature(model, valid_dataloader, args, "valid")
test_files = get_feature(model, test_dataloader, args, "test")
return train_files, valid_files, test_files
def train(model, train_loader, valid_loader, criterion, optimizer, scheduler, device, num_epochs=200, patience=10):
best_auc = 0
best_model = None
epochs_without_improvement = 0 # Initialize counter for early stopping
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch in train_loader:
prot, drug, prot_mask, drug_mask, label = batch
prot, drug, prot_mask, drug_mask, label = prot.to(device), drug.to(device), prot_mask.to(device), drug_mask.to(device), label.to(device)
optimizer.zero_grad()
output = model(prot, drug, prot_mask, drug_mask)
loss = criterion(output, label.unsqueeze(1).float())
loss.backward()
optimizer.step()
total_loss += loss.item()
scheduler.step()
# Validation phase
model.eval()
with torch.no_grad():
predictions, actuals = [], []
for batch in valid_loader:
prot, drug, prot_mask, drug_mask, label = batch
prot, drug, prot_mask, drug_mask, label = prot.to(device), drug.to(device), prot_mask.to(device), drug_mask.to(device), label.to(device)
output = model(prot, drug, prot_mask, drug_mask)
predictions.extend(output.squeeze().cpu().numpy())
actuals.extend(label.cpu().numpy())
auc = roc_auc_score(actuals, predictions)
print(f'Epoch {epoch+1}: Validation AUC: {auc:.4f}')
# Log metrics to wandb
wandb.log({"epoch": epoch + 1, "loss": total_loss / len(train_loader), "val_auc": auc})
if auc > best_auc:
best_auc = auc
best_model = model.state_dict()
# Save the best model
torch.save(best_model, f'{best_model_dir}/best_model.ckpt')
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
if epochs_without_improvement >= patience:
print(f'Early stopping triggered after {epoch+1} epochs.')
break
print(f'Epoch {epoch+1}, Loss: {total_loss / len(train_loader)}')
return best_model
def test(model, test_loader, device):
model.eval()
predictions, actuals = [], []
with torch.no_grad():
for batch in test_loader:
prot, drug, prot_mask, drug_mask, label = batch
prot, drug = prot.to(device), drug.to(device)
prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device)
output = model(prot, drug, prot_mask, drug_mask)
predictions.extend(output.squeeze().cpu().numpy())
actuals.extend(label.cpu().numpy())
auc = roc_auc_score(actuals, predictions)
aupr = average_precision_score(actuals, predictions)
accuracy = accuracy_score(actuals, np.array(predictions) > 0.5)
print(f'Test AUC: {auc}, AUPR: {aupr}, Accuracy: {accuracy}')
wandb.log({"Test AUC": auc, "AUPR": aupr, "Accuracy": accuracy})
if __name__ == "__main__":
args = parse_config()
device = torch.device(args.device)
print(f"Current device: {args.device}.")
wandb.init(project="DTI_Prediction_with_Token-level_Fusion", config=args, save_code=True)
wandb.config.update(args)
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
best_model_dir = (
f"{args.save_path_prefix}{args.dataset}_{args.fusion}")
os.makedirs(best_model_dir, exist_ok=True)
args.save_name = best_model_dir
model = FusionDTI(1280, 768, args).to(device)
criterion = nn.BCELoss()
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-4)
# optimizer = optim.AdamW(model.parameters(), lr=1e-3)
scheduler = CosineAnnealingLR(optimizer, T_max=100, eta_min=1e-8)
# Load features from the saved batch files
train_files, valid_files, test_files = encode_pretrained_feature(args)
train_loader = get_data_loader(train_files, batch_file=1, shuffle=True)
valid_loader = get_data_loader(valid_files, batch_file=1, shuffle=False)
test_loader = get_data_loader(test_files, batch_file=1, shuffle=False)
best_model = train(model, train_loader, valid_loader, criterion, optimizer, scheduler, device, num_epochs=500)
model.load_state_dict(best_model)
test(model, test_loader, device)
wandb.finish()