-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTextEmbeddingPipeline.py
144 lines (123 loc) · 6.05 KB
/
TextEmbeddingPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from transformers import pipeline
from datetime import datetime
import os
import json
from datasets import load_from_disk, load_dataset
import numpy as np
from tqdm.auto import tqdm
from transformers.pipelines.pt_utils import KeyDataset
import textwrap
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.neural_network import MLPClassifier
class EmbedFlow:
def __init__(self, model_name, dataset_name="IMDB", prefix="Prefix: ", suffix=" :Suffix"):
self.device = 0 if torch.cuda.is_available() else -1
self.models = {
"BERT": "bert-base-uncased",
"ST": "sentence-transformers/all-MiniLM-L12-v2",
"T5": "t5-base",
"INS": "hkunlp/instructor-large"
}
self.datasets = {
"IMDB": "imdb"
}
self.train_data = None
self.test_data = None
self.model_name = model_name
self.dataset_name = dataset_name.lower()
self.prefix = prefix
self.suffix = suffix
self.truncation = True
self.padding = True
self.max_length = 512
self.dataset_key = "text"
if model_name not in self.models:
raise ValueError(f"Model '{model_name}' is not available. Choose from {list(self.models.keys())}.")
if dataset_name.upper() not in self.datasets:
raise ValueError(f"Dataset '{dataset_name}' is not available. Choose from {list(self.datasets.keys())}.")
self.model = pipeline("feature-extraction", model=self.models[model_name], device=self.device)
def load_sample_data(self, sample_size=5000):
dataset = load_dataset(self.datasets[self.dataset_name.upper()])]
if(sample_size!=0):
self.train_data = dataset['train'].shuffle(seed=42).select(range(sample_size))
self.test_data = dataset['test'].shuffle(seed=42).select(range(sample_size))
self.train_data.save_to_disk('sampled_train_data')
self.test_data.save_to_disk('sampled_test_data')
print("Data loaded and sampled.")
def load_local_data(self):
try:
self.train_data = load_from_disk('sampled_train_data')
self.test_data = load_from_disk('sampled_test_data')
print("Local data loaded.")
except Exception as e:
print(f"Error loading local data: {e}")
def augment_data(self):
self.train_data = self.train_data.map(self.modify_example)
#self.test_data = self.test_data.map(self.modify_example)
print("Data augmented with prefixes and suffixes.")
def modify_example(self, example):
example['text'] = self.prefix + example['text'] + self.suffix
return example
def embed_data(self, data, use_mean_pooling=False):
data_key = KeyDataset(data, self.dataset_key)
pipe = self.model(data_key, return_tensors=True, truncation=self.truncation, padding=self.padding, max_length=self.max_length)
embeddings = []
for tensor in tqdm(pipe, desc="Embedding text"):
if use_mean_pooling:
tensor = tensor.mean(dim=1).flatten()
embeddings.append(tensor.numpy())
return np.array(embeddings), np.array(data["label"])
def save_data(self, embeddings, labels, save_path="data"):
timestamp = datetime.now().strftime("%m-%d_%H:%M")
avg_shape = np.mean([tensor.shape for tensor in embeddings], axis=0).tolist()
embedding_info = {
'model_name': self.model_name,
'num_embeddings': len(embeddings),
'avg_embedding_shape': avg_shape,
'created_at': timestamp
}
os.makedirs(save_path, exist_ok=True)
np.save(os.path.join(save_path, f"{self.model_name}_embeddings.npy"), embeddings)
np.save(os.path.join(save_path, f"{self.model_name}_labels.npy"), labels)
with open(os.path.join(save_path, f"{self.model_name}_metadata.json"), 'w') as f:
json.dump(embedding_info, f)
print(f"Embeddings and labels saved at {timestamp}.")
def load_data(self, save_path="data"):
embeddings = np.load(os.path.join(save_path, f"{self.model_name}_embeddings.npy"))
labels = np.load(os.path.join(save_path, f"{self.model_name}_labels.npy"))
with open(os.path.join(save_path, f"{self.model_name}_metadata.json"), 'r') as f:
metadata = json.load(f)
print(f"Data loaded for model: {metadata['model_name']}")
return embeddings, labels
def evaluate(self, method='svm', save_path="data"):
embeddings, labels = self.load_data(save_path)
train_size = int(0.8 * len(embeddings))
train_embeddings, train_labels = embeddings[:train_size], labels[:train_size]
test_embeddings, test_labels = embeddings[train_size:], labels[train_size:]
if method == 'svm':
model = SVC(kernel='linear')
elif method == 'mlp':
model = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, alpha=1e-4,
solver='sgd', verbose=1, random_state=1,
learning_rate_init=.1)
else:
raise ValueError("Choose either 'svm' or 'mlp' for evaluation.")
model.fit(train_embeddings, train_labels)
predictions = model.predict(test_embeddings)
print(f"{method.upper()} Evaluation Report:")
print(classification_report(test_labels, predictions))
def start_flow(self, sample_size=5000, use_mean_pooling=False, method='svm', save_path="data"):
self.load_sample_data(sample_size)
self.load_local_data()
self.augment_data()
train_embeddings, train_labels = self.embed_data(self.train_data, use_mean_pooling=use_mean_pooling)
self.save_data(train_embeddings, train_labels, save_path)
self.evaluate(method, save_path)
# Example usage:
def main():
embedder = EmbedFlow(model_name="BERT", dataset_name="IMDB", prefix="Prefix: ", suffix=" :Suffix")
embedder.start_flow(sample_size=1000, use_mean_pooling=True, method='svm')
if __name__ == "__main__":
main()