|
1 | 1 | import logging
|
2 | 2 | import os
|
3 |
| -import unittest |
4 | 3 | from difflib import SequenceMatcher, unified_diff
|
5 | 4 | from pathlib import Path
|
6 | 5 |
|
7 | 6 | import pytest
|
8 |
| -import requests |
9 |
| - |
10 |
| -from unstract.llmwhisperer import LLMWhispererClient |
11 | 7 |
|
12 | 8 | logger = logging.getLogger(__name__)
|
13 | 9 |
|
@@ -40,93 +36,37 @@ def test_get_usage_info(client):
|
40 | 36 | )
|
41 | 37 | def test_whisper(client, data_dir, processing_mode, output_mode, input_file):
|
42 | 38 | file_path = os.path.join(data_dir, input_file)
|
43 |
| - response = client.whisper( |
| 39 | + whisper_result = client.whisper( |
44 | 40 | processing_mode=processing_mode,
|
45 | 41 | output_mode=output_mode,
|
46 | 42 | file_path=file_path,
|
47 | 43 | timeout=200,
|
48 | 44 | )
|
49 |
| - logger.debug(response) |
| 45 | + logger.debug(whisper_result) |
50 | 46 |
|
51 | 47 | exp_basename = f"{Path(input_file).stem}.{processing_mode}.{output_mode}.txt"
|
52 | 48 | exp_file = os.path.join(data_dir, "expected", exp_basename)
|
53 |
| - with open(exp_file, encoding="utf-8") as f: |
54 |
| - exp = f.read() |
55 |
| - |
56 |
| - assert isinstance(response, dict) |
57 |
| - assert response["status_code"] == 200 |
58 |
| - |
59 |
| - # For text based processing, perform a strict match |
60 |
| - if processing_mode == "text" and output_mode == "text": |
61 |
| - assert response["extracted_text"] == exp |
62 |
| - # For OCR based processing, perform a fuzzy match |
63 |
| - else: |
64 |
| - extracted_text = response["extracted_text"] |
65 |
| - similarity = SequenceMatcher(None, extracted_text, exp).ratio() |
66 |
| - threshold = 0.97 |
67 |
| - |
68 |
| - if similarity < threshold: |
69 |
| - diff = "\n".join( |
70 |
| - unified_diff(exp.splitlines(), extracted_text.splitlines(), fromfile="Expected", tofile="Extracted") |
71 |
| - ) |
72 |
| - pytest.fail(f"Texts are not similar enough: {similarity * 100:.2f}% similarity. Diff:\n{diff}") |
| 49 | + assert_extracted_text(exp_file, whisper_result, processing_mode, output_mode) |
73 | 50 |
|
74 | 51 |
|
75 |
| -# TODO: Review and port to pytest based tests |
76 |
| -class TestLLMWhispererClient(unittest.TestCase): |
77 |
| - @unittest.skip("Skipping test_whisper") |
78 |
| - def test_whisper(self): |
79 |
| - client = LLMWhispererClient() |
80 |
| - # response = client.whisper( |
81 |
| - # url="https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf" |
82 |
| - # ) |
83 |
| - response = client.whisper( |
84 |
| - file_path="test_data/restaurant_invoice_photo.pdf", |
85 |
| - timeout=200, |
86 |
| - store_metadata_for_highlighting=True, |
87 |
| - ) |
88 |
| - print(response) |
89 |
| - # self.assertIsInstance(response, dict) |
| 52 | +def assert_extracted_text(file_path, whisper_result, mode, output_mode): |
| 53 | + with open(file_path, encoding="utf-8") as f: |
| 54 | + exp = f.read() |
90 | 55 |
|
91 |
| - # @unittest.skip("Skipping test_whisper") |
92 |
| - def test_whisper_stream(self): |
93 |
| - client = LLMWhispererClient() |
94 |
| - download_url = "https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf" |
95 |
| - # Create a stream of download_url and pass it to whisper |
96 |
| - response_download = requests.get(download_url, stream=True) |
97 |
| - response_download.raise_for_status() |
98 |
| - response = client.whisper( |
99 |
| - stream=response_download.iter_content(chunk_size=1024), |
100 |
| - timeout=200, |
101 |
| - store_metadata_for_highlighting=True, |
102 |
| - ) |
103 |
| - print(response) |
104 |
| - # self.assertIsInstance(response, dict) |
| 56 | + assert isinstance(whisper_result, dict) |
| 57 | + assert whisper_result["status_code"] == 200 |
105 | 58 |
|
106 |
| - @unittest.skip("Skipping test_whisper_status") |
107 |
| - def test_whisper_status(self): |
108 |
| - client = LLMWhispererClient() |
109 |
| - response = client.whisper_status(whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a") |
110 |
| - logger.info(response) |
111 |
| - self.assertIsInstance(response, dict) |
| 59 | + # For OCR based processing |
| 60 | + threshold = 0.97 |
112 | 61 |
|
113 |
| - @unittest.skip("Skipping test_whisper_retrieve") |
114 |
| - def test_whisper_retrieve(self): |
115 |
| - client = LLMWhispererClient() |
116 |
| - response = client.whisper_retrieve(whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a") |
117 |
| - logger.info(response) |
118 |
| - self.assertIsInstance(response, dict) |
| 62 | + # For text based processing |
| 63 | + if mode == "native_text" and output_mode == "text": |
| 64 | + threshold = 0.99 |
| 65 | + extracted_text = whisper_result["extracted_text"] |
| 66 | + similarity = SequenceMatcher(None, extracted_text, exp).ratio() |
119 | 67 |
|
120 |
| - @unittest.skip("Skipping test_whisper_highlight_data") |
121 |
| - def test_whisper_highlight_data(self): |
122 |
| - client = LLMWhispererClient() |
123 |
| - response = client.highlight_data( |
124 |
| - whisper_hash="9924d865|5f1d285a7cf18d203de7af1a1abb0a3a", |
125 |
| - search_text="Indiranagar", |
| 68 | + if similarity < threshold: |
| 69 | + diff = "\n".join( |
| 70 | + unified_diff(exp.splitlines(), extracted_text.splitlines(), fromfile="Expected", tofile="Extracted") |
126 | 71 | )
|
127 |
| - logger.info(response) |
128 |
| - self.assertIsInstance(response, dict) |
129 |
| - |
130 |
| - |
131 |
| -if __name__ == "__main__": |
132 |
| - unittest.main() |
| 72 | + pytest.fail(f"Texts are not similar enough: {similarity * 100:.2f}% similarity. Diff:\n{diff}") |
0 commit comments