forked from DrWaleedAYousef/Teaching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
120 lines (70 loc) · 4.87 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html><head><title>Pattern Recognition</title>
<META content="text/html; charset=utf-8" http-equiv="content-style-type">
<!--<META name=GENERATOR content="MSHTML 8.00.6001.18854">-->
</head>
<body>
<center><h2>IT 342: Pattern Recognition</h2></center>
<center><h2>Advice: Please, LOVE and UNDERSTAND probability, statistics, and linear algebra before you register for this course.</h2></center>
<h2>Resources</h2>
<ul>
<li><a href="CourseSyllabus.pdf">Course syllabus</a>.</li>
<li><a href="http://www.youtube.com/course?list=ECoK2Lr1miEm9scZv7zSAMENjMhcMMH2cU" target="_blank">Video Lectures.</a></li>
<li><a href="http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html"target="_blank">Link to book webpage</a>. (You can download it in pdf format!). Other two great references (not mandatory for the course) are <a href="http://rii.ricoh.com/~stork/DHS.html" target="_blank">Duda, Hart, and Stork</a>; and <a href="http://research.microsoft.com/en-us/um/people/cmbishop/PRML/" target="_blank">Bishop.</a></li>
<li><a href="LectureNotes/">Lecture Notes</a>
<li><a href="Code">Code and Programs</a>.</li>
<li><a href="ImportantTexts.pdf">List of useful texts.</a></li>
<li><a href="http://www.ics.uci.edu/~mlearn/MLRepository.html" target="_blank">UCI Machine Learning Repository</a> has many real-life data sets.</li>
<li><a href="https://www.datacamp.com/groups/data-science-2-pattern-recognition-and-statistical-learning" target="_blank">DataCamp assignments</a></li>
<!--
<li>Please, download <a href="SampleFinal2007.pdf">exam sample</a>. </li>
-->
</ul>
<br>
<!-- <h2><a href="../VideosOnDVD" target="_blank">Video Lectures on DVD.</a></h2> -->
<h2>Lectures:</h2>
<table>
<tr><td width="30">01.</td><td width="600">Introduction</td></tr>
<tr><td>02.</td> <td>Introduction to Statistical Decision Theory I (Regression)</td></tr>
<tr><td>03.</td> <td>Introduction to Statistical Decision Theory II (Classification)</td></tr>
<tr><td>04.</td> <td>Introduction to Statistical Decision Theory III (Classification)</td></tr>
<tr><td>05.</td> <td>Getting to "Learning" I (Regression)</td></tr>
<tr><td>06.</td> <td>Getting to "Learning" II (Classification)</td></tr>
<tr><td>07.</td> <td>Linear Models for Regression: Least Mean Square</td></tr>
<tr><td>08.</td> <td>Linear Models for Regression: Centered Model</td></tr>
<tr><td>09.</td> <td>Linear Models for Regression: Performance</td></tr>
<tr><td>10.</td> <td>Linear Models for Regression: Data Preprocessing and Transformation</td></tr>
<tr><td>11.</td> <td>Bias-Variance Decomposition</td></tr>
<tr><td>A1.</td> <td>fast revision on basics of Probability</td></tr>
<tr><td>12.</td> <td>fast revision on basics of Statistics</td></tr>
</table>
<br>
<h2>Assignments</h2>
<ol type="1">
<!-- <li>Read the following: (1) Ch. 2 in text. (2) A summary of probabilistic foundations of the Statistical Pattern Recognition (SPR) in this <a href="SPRintroduction.pdf">article</a>, which is the first chapter in my dissertation. (3)The journal paper: Jain, Duin, and Jianchang (2000), Statistical Pattern Recognition: a review, PAMI, IEEE Transactions on, 22 (1).</li>-->
<li>Ch2, Duda, Hart, and Stork: solve 2, 6, 7, 8, 9, 27, 33; and computer exercises 2, 3.</li>
<li><a href="Assignments/HW4.pdf">LLR simulation</a></li>
<li><a href="Assignments/HW5.pdf">Linear models</a></li>
<li><a href="Assignments/HW6.pdf">Linear models (cont.)</a></li>
<li><a href="Assignments/HW7.pdf">Linear models (cont.)</a>, and <a href="Assignments/HW8.pdf">this one</a></li>
<li><a href="Assignments/HW9.pdf">Linear models for classification</a></li>
<li><a href="Assignments/HW10.pdf">Linear models for classification (2)</a></li>
<pre>
<b>Problems on Appendix (revision):</b>
</pre>
<li>Review the basics of Probability and Statistics then solve <a href="Assignments/Prob1.pdf">HW1</a>, <a href="Assignments/Prob3.pdf">HW2</a>, and <a href="Assignments/HW2.pdf">HW3</a></li>
</ol>
<br>
<h2>Suggested Projects</h2>
Please, download <a href="ProjectsSpring2011.pdf">guidelines, and suggested projects</a>.
<!--<h2><FONT COLOR="#FB0000">Take-home midterm exam</FONT></h2>
<a href="MidTerm2011.pdf">This is the midterm exam</a>. Solve as much as you can.
-->
<br>
<br>
<h2><b>Announcements</b></h2>
Please, find here <a href="Exams">samples for exams.</a>
<!--For announcements, grades, and other postings, please visit the <a href="http://www.helwan.edu.eg:90/fcih/details.asp?id=155" target="_blank">TA's Webpage</a>.-->
<br>
<br><br><br><hr width="200"><br>
</body></html>