-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (39 loc) · 1.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import torch
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torch.optim.lr_scheduler import ReduceLROnPlateau
from config import *
from cnn_vae.model import CVAE
from cnn_vae.dataset import RanjeetFaceDataset
from cnn_vae.train import train
from cnn_vae.utils import generate_images, visualize_latent_space
def main():
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = RanjeetFaceDataset(data_dir=data_dir, transform=train_transform)
val_size = int(len(dataset) * validation_split)
train_size = len(dataset) - val_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
model = CVAE(latent_dim).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=10, verbose=True)
os.makedirs(checkpoint_dir, exist_ok=True)
train(model, train_loader, val_loader, optimizer, scheduler, device, num_epochs, checkpoint_dir, loss_dir)
os.makedirs(output_dir, exist_ok=True)
generate_images(model, num_images=64, latent_dim=latent_dim, device=device, output_dir=output_dir)
os.makedirs(latent_dir, exist_ok=True)
visualize_latent_space(model, train_loader, device, latent_dim, latent_dir)
print(f"Generated images saved to {output_dir}")
if __name__ == "__main__":
main()