-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsine_tone.py
141 lines (117 loc) · 5.94 KB
/
sine_tone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
import sys
import wave
import math
import struct
import random
import argparse
import matplotlib.pyplot as plt
from itertools import *
def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
def sine_wave(frequency=5000.0, sample_rate=44100, amplitude=0.5): #changed - framerate -> sample_rate
'''
Generate a sine wave at a given frequency of five times its time period
'''
sample_rate = 50*frequency #set variable sample rate if reqd.
num_samples = int(sample_rate / frequency)
if amplitude > 1.0: amplitude = 1.0
if amplitude < 0.0: amplitude = 0.0
lookup_table = [float(amplitude) * math.sin(2.0*math.pi*float(frequency)*(float(i%num_samples)/float(sample_rate))) for i in xrange(num_samples)]
#print lookup_table[1]
for i in range(4):
for j in range(num_samples):
lookup_table.append(lookup_table[j])
time_period = 1.0/frequency
start = 0.0
step = time_period/num_samples
print step
time = []
for i in range(5*num_samples):
if start > (5*time_period):
start = (5*time_period)
time.append(start)
start = start + step
plt.subplot(111,axisbg='black')
plt.axis([0,5*time_period,(-(amplitude)-0.5),(amplitude+0.5)])
plt.plot(time, lookup_table, 'go')
plt.plot(time, lookup_table, 'g')
plt.ylabel('Amplitude');
plt.xlabel('Time');
plt.title('Carrier Waveform');
plt.text((time_period), amplitude+0.3, 'Frequency = '+str(frequency) + 'Hz', color = 'red')
plt.text((time_period), amplitude+0.2, 'Amplitude = '+str(amplitude) + 'units', color = 'red')
plt.text((2*time_period), amplitude+0.3, 'Time period = '+str(time_period) + 's', color = 'red')
#print lookup_table
return [lookup_table[i%num_samples] for i in range(num_samples)]#count(0)) #count(firstval = 0, step = 1) - function which can start with a first_value and increment with the step value...infinitely..
# use range fn for finite repetition
def square_wave(frequency=440.0, framerate=44100, amplitude=0.5):
for s in sine_wave(frequency, framerate, amplitude):
if s > 0:
yield amplitude
elif s < 0:
yield -amplitude
else:
yield 0.0
def damped_wave(frequency=440.0, framerate=44100, amplitude=0.5, length=44100):
if amplitude > 1.0: amplitude = 1.0
if amplitude < 0.0: amplitude = 0.0
return (math.exp(-(float(i%length)/float(framerate))) * s for i, s in enumerate(sine_wave(frequency, framerate, amplitude)))
def white_noise(amplitude=0.5):
'''
Generate random samples.
'''
return (float(amplitude) * random.uniform(-1, 1) for i in count(0))
def compute_samples(channels, nsamples=None):
'''
create a generator which computes the samples.
essentially it creates a sequence of the sum of each function in the channel
at each sample in the file for each channel.
'''
return islice(izip(*(imap(sum, izip(*channel)) for channel in channels)), nsamples)
def write_wavefile(filename, samples, nframes=None, nchannels=2, sampwidth=2, framerate=44100, bufsize=2048):
"Write samples to a wavefile."
if nframes is None:
nframes = -1
w = wave.open(filename, 'w')
w.setparams((nchannels, sampwidth, framerate, nframes, 'NONE', 'not compressed'))
max_amplitude = float(int((2 ** (sampwidth * 8)) / 2) - 1)
# split the samples into chunks (to reduce memory consumption and improve performance)
for chunk in grouper(bufsize, samples):
frames = ''.join(''.join(struct.pack('h', int(max_amplitude * sample)) for sample in channels) for channels in chunk if channels is not None)
w.writeframesraw(frames)
w.close()
return filename
def write_pcm(f, samples, sampwidth=2, framerate=44100, bufsize=2048):
"Write samples as raw PCM data."
max_amplitude = float(int((2 ** (sampwidth * 8)) / 2) - 1)
# split the samples into chunks (to reduce memory consumption and improve performance)
for chunk in grouper(bufsize, samples):
frames = ''.join(''.join(struct.pack('h', int(max_amplitude * sample)) for sample in channels) for channels in chunk if channels is not None)
f.write(frames)
f.close()
return filename
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--channels', help="Number of channels to produce", default=2, type=int)
parser.add_argument('-b', '--bits', help="Number of bits in each sample", choices=(16,), default=16, type=int)
parser.add_argument('-r', '--rate', help="Sample rate in Hz", default=44100, type=int)
parser.add_argument('-t', '--time', help="Duration of the wave in seconds.", default=60, type=int)
parser.add_argument('-a', '--amplitude', help="Amplitude of the wave on a scale of 0.0-1.0.", default=0.5, type=float)
parser.add_argument('-f', '--frequency', help="Frequency of the wave in Hz", default=440.0, type=float)
parser.add_argument('filename', help="The file to generate.")
args = parser.parse_args()
# each channel is defined by infinite functions which are added to produce a sample.
channels = ((sine_wave(args.frequency, args.rate, args.amplitude),) for i in range(args.channels))
# convert the channel functions into waveforms
samples = compute_samples(channels, args.rate * args.time)
# write the samples to a file
if args.filename == '-':
filename = sys.stdout
else:
filename = args.filename
write_wavefile(filename, samples, args.rate * args.time, args.channels, args.bits / 8, args.rate)
if __name__ == "__main__":
main()