-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevalute.py
44 lines (37 loc) · 1.5 KB
/
evalute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import torch
import torch.nn.functional as F
def imgtensor_flatten_sampler(rgb, spe, random_sample_num=None):
assert rgb.dim() == 3 #[3, 512, 512]
rgb = rgb.view(rgb.size(0), -1).transpose(0, 1)
spe = spe.view(spe.size(0), -1).transpose(0, 1)
if random_sample_num is None: return rgb, spe
index = np.random.permutation(rgb.size(0))[0:random_sample_num]
return rgb[index, :], spe[index, :]
def compare_rmse_g(pred, gt, eps = 1e-2):
assert pred.size() == gt.size() # torch.Size([1, 31, 512, 512])
pred = pred.contiguous().view(pred.size(0), -1)
gt = gt.view(gt.size(0), -1)
ret = torch.sqrt(eps + torch.mean((pred - gt) ** 2, dim=1))
# assert ret.numel() == 1
return ret.mean()
def compare_rmse(pred, gt, eps=1e-2):
pred = pred.contiguous().view(pred.size(0), -1)
gt = gt.view(gt.size(0), -1)
ret = torch.mean(torch.sqrt(eps + (pred - gt) ** 2), dim=1)
return ret.mean()
def compare_rrmse(pred, gt, eps = 1e-2):
pred = pred.contiguous().view(pred.size(0), -1)
gt = gt.view(gt.size(0), -1)
ret = torch.mean( torch.sqrt((pred-gt)**2)/(gt+eps) + eps )
return ret.mean()
def compare_rrmse_g(pred, gt, eps = 1e-2):
pred = pred.contiguous().view(pred.size(0), -1)
gt = gt.view(gt.size(0), -1)
gt_mean = gt.mean()
ret = torch.sqrt( eps + torch.mean( (( pred-gt )/gt_mean)**2 ) )
return ret.mean()
if __name__=="__main__":
a = torch.randn([1, 31, 512, 512])
b = torch.randn([1, 31, 512, 512])
compare_rmse_g(a, b)