This repository has been archived by the owner on Jun 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshot_detector.py
371 lines (275 loc) · 9.58 KB
/
shot_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""
Archit Mathur
github.com/achie27
Detects shot boundaries and groups them into scenes
Last updated - 13/06/2018
TODO : Make key frame extraction better
"""
import cv2
import numpy as np
import multiprocessing as mp
from helpers import search, HelperThread
from moviepy.editor import ImageSequenceClip
class DetectShots():
def __init__(self, file_path):
self.frame_diff_interval, self.total_pixels = 10, 320*240
self.shot_similarity_threshold, self.abrupt_trans_cnt = 3, 8
self.upper_bound, self.lower_bound, = 0.45, 0.25
self.hist, self.fd, self.shots, = [], [], []
self.total_shots, self.total_frames = 0, 0
self.key_frames, self.out, self.D = [], [], []
self.shot_scene, self.scenes = [], []
self.avg_shot_length, self.shot_cut_freq = [], []
self.file_path = file_path
self.file = cv2.VideoCapture(file_path)
self.filename = file_path[file_path.rfind('/')+1:]
self.fps = self.file.get(cv2.CAP_PROP_FPS)
self.T = int(self.fps * 150) #2.5min
def multithreaded_fd_calc(self):
"""
Creates threads and file pointers for multithreading frame
difference calculation
"""
self.total_frames = int(self.file.get(cv2.CAP_PROP_FRAME_COUNT))
self.hist = [0]*self.total_frames
self.fd = [0]*self.total_frames
# need different file pointers for multithreading
tmp_file1 = cv2.VideoCapture(self.file_path)
tmp_file2 = cv2.VideoCapture(self.file_path)
# each function processes a third of the file
f1 = lambda : self.calc_frame_diff(
1, self.total_frames//3, self.file
)
f2 = lambda : self.calc_frame_diff(
self.total_frames//3, 2*self.total_frames//3, tmp_file1
)
f3 = lambda : self.calc_frame_diff(
2*self.total_frames//3, self.total_frames, tmp_file2
)
a = HelperThread("Frame Difference 1", f1)
b = HelperThread("Frame Difference 2", f2)
c = HelperThread("Frame Difference 3", f3)
a.start(), b.start(), c.start()
a.join(), b.join(), c.join()
tmp_file2.release(), tmp_file1.release()
def calc_frame_diff(self, st, end, file):
"""
Calculates the histogram difference between frames
self.frame_diff_interval apart. Helps detect shot boundaries.
"""
# set the opencv file pointer to read frame no st next
file.set(1, st-1)
# housekeeping
counter = max(0, st-1)
# iterate for the entire range of frames (st, end)
while file.isOpened() and counter < end:
suc, fr = file.read()
if not suc : break
fr = cv2.resize(fr, (320, 240))
gray_fr = cv2.cvtColor(fr, cv2.COLOR_BGR2GRAY)
# the frame's histogram
hist_fr = cv2.calcHist(
[gray_fr], [0], None, [256], [0, 256]
)
# save the histogram/frame diff -
# calculating it for frames self.frame_diff_interval apart
# helps detect both gradual and abrupt transitions
if counter >= self.frame_diff_interval :
tmp = np.abs(
hist_fr-self.hist[counter-self.frame_diff_interval]
)
fd = np.sum(tmp)/(2*self.total_pixels)
self.fd[counter-self.frame_diff_interval] = fd
# save the histogram
self.hist[counter] = hist_fr
counter+=1
def find_shots(self):
"""
Using the frame difference calculated before, it finds shot
boundaries and saves the end frame no. of each shot in
self.shots.
"""
counter = 0
# a local maxima in FD indicates a potential gradual transition
diff_fd = np.diff(self.fd)
# iterate!
for i in range(2, self.total_frames-2):
# naively checking for local maxima
# in diff_fd, x corresponds to x-1
local_max=diff_fd[i+1] < 0 and diff_fd[i] > 0
# if this FD is above a threshold and a local max, it
# corresponds to a gradual transition boundary
if self.fd[i] > self.upper_bound and local_max :
# add only if shots are 8s apart
if not search(self.shots, int(i-self.fps*8), int(i+self.fps*8)):
self.shots.append(i - self.frame_diff_interval)
# check for abrupt transition boundary
else :
# if a series of FD are above a certain threshold, it
# is an abrupt transition
if self.fd[i] > self.lower_bound and self.fd[i-1] > self.lower_bound:
counter += 1
else:
counter = 0
if counter >= self.abrupt_trans_cnt :
counter = 0
if not search(self.shots, i-self.fps*8, i+self.fps*8):
self.shots.append(i - self.abrupt_trans_cnt - self.frame_diff_interval)
self.total_shots = len(self.shots)
def find_key_frames(self):
self.key_frames = []
with mp.Pool(4) as p:
args = [self.shots, self.hist, self.total_pixels]
a=p.apply_async(
DetectShots.find,
args=(
*args, 0, self.total_shots//2, 1, self.fps,
)
)
b=p.apply_async(
DetectShots.find,
args=(
*args, self.total_shots//2, self.total_shots, 2, self.fps,
)
)
p.close()
p.join()
self.key_frames = a.get() + b.get()
def group_into_scenes(self):
D = []
for i in range(0, self.total_shots):
lim, j = self.key_frames[i][0] + self.T, i+1
while j < self.total_shots and self.key_frames[j][0] <= lim:
tmp = np.array([[0]*256]).reshape((256, 1))
for i_key_frame in self.key_frames[i]:
for j_key_frame in self.key_frames[j]:
x = np.abs(self.hist[i_key_frame] - self.hist[j_key_frame])
tmp = tmp + x
tmp = np.sum(tmp) / (2*self.total_pixels)
D.append({
'f1' : i,
'f2' : j,
'fd' : tmp
})
j+=1
self.shot_scene = [i for i in range(0, self.total_shots)]
D.sort(key = lambda o : o["fd"])
for ob in D:
if ob['fd'] > self.shot_similarity_threshold:
break
self.shot_scene[ob['f1']] = ob['f1']
self.shot_scene[ob['f2']] = ob['f1']
def path_compress(index, arr):
if arr[index] == index:
return
path_compress(arr[index], arr)
arr[index] = arr[arr[index]]
for i in range(0, self.total_shots):
path_compress(i, self.shot_scene)
def process(self):
"""
This is what should be called to calculate stuff
"""
self.multithreaded_fd_calc()
self.find_shots()
self.find_key_frames()
self.group_into_scenes()
def get_shots(self):
# convert = lambda a : a//60 + (a/60 - a//60)*0.6
shots = [i/self.fps for i in self.shots]
return {
"timestamps" : shots,
"frames" : self.shots
}
def get_key_frames(self):
frame_time_stamps = []
for shot in self.key_frames:
frame_time_stamps.append([])
for key_frame in shot:
frame_time_stamps[-1].append(key_frame/self.fps)
return {
"timestamps" : frame_time_stamps,
"frames" : self.key_frames
}
def get_scenes(self):
self.scenes = [[] for i in range(0, self.total_shots)]
i = 0
while i < self.total_shots :
# the ith shot belongs to self.shot_scene[i] root shot
self.scenes[self.shot_scene[i]].append(i)
i = i + 1
# removing shots that weren't root thus getting scenes
while self.scenes.count([]) > 0:
self.scenes.remove([])
return self.scenes
def get_average_shot_length(self):
self.avg_shot_length, mx = [], 0
tot_scene = len(self.scenes)
for i in range(0, tot_scene):
l, cnt = 0, 0
for ob in self.scenes[i]:
pre = 0 if ob == 0 else self.shots[ob-1]
l += (self.shots[ob] - pre)
cnt += 1
l = l/cnt
self.avg_shot_length.append(l)
return np.array(self.avg_shot_length)
def get_shot_cut_freq(self):
self.shot_cut_freq = []
for i in range(0, len(self.scenes)):
self.shot_cut_freq.append(1/len(self.scenes[i]))
return self.shot_cut_freq
def save_key_frames(self):
frame_list = []
for shot in self.key_frames:
for fr in shot:
self.file.set(1, fr-1)
fr = np.array(self.file.read()[1])
fr = cv2.cvtColor(fr, cv2.COLOR_BGR2RGB)
frame_list.append(fr)
self.out = ImageSequenceClip(frame_list, fps=1)
self.out.write_videofile('[FabBits] '+self.filename, codec='libx264')
def save(self):
self.save_key_frames()
# can't be a class method since it is getting multiprocessed -
# multiprocessing requires all the arguments to be pickle-able;
# self.file, opencv's VideoCapture object, is not pickleable
@staticmethod
def find(shots, hist, total_pixels, s, e, idn, fps):
threshold = 0.4
transition_offset = 30 #frames
key_frames = [0]*(e-s)
for i in range(s, e):
pre = 0 if i == 0 else shots[i-1]
key_frames[i-s]=[pre+transition_offset]
for fr in range(pre+transition_offset+1, shots[i]):
flag = 1
for kfr in key_frames[i-s]:
dif = np.sum(np.abs(hist[kfr] - hist[fr]))/(2*total_pixels)
if dif < threshold : flag = 0
# different and 4 seconds apart
if flag == 1 and (fr - key_frames[i-s][-1]) > 4*fps:
key_frames[i-s].append(fr)
return(key_frames)
if __name__ == '__main__':
import sys, os
file = sys.argv[1]
if not os.path.isfile(file):
print("There is no " + file +"!")
sys.exit()
op = DetectShots(file)
op.process()
shots = op.get_shots()
with open('shot_boundaries_of_'+file[file.rfind('/')+1:]+'.txt', 'w') as f:
f.write(str(shots["timestamps"]))
key_frames = op.get_key_frames()
with open('key_frames_of_'+file[file.rfind('/')+1:]+'.txt', 'w') as f:
f.write(str(key_frames["timestamps"]))
with open('scenes_of_'+file[file.rfind('/')+1:]+'.txt', 'w') as f:
f.write(str(op.get_scenes()))
with open('shot_lengths_of_'+file[file.rfind('/')+1:]+'.txt', 'w') as f:
f.write(str(op.get_average_shot_length()))
with open('shot_cut_freq_of_'+file[file.rfind('/')+1:]+'.txt', 'w') as f:
f.write(str(op.get_shot_cut_freq()))
op.save()